1.

Record Nr.

UNINA9910132160703321

Autore

Oustaloup Alain

Titolo

Diversity and non-integer differentiation for system dynamics / / Alain Oustaloup ; series editor Bernard Dubuisson

Pubbl/distr/stampa

London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014

©2014

ISBN

1-118-76082-4

1-118-76086-7

1-118-76092-1

Descrizione fisica

1 online resource (383 p.)

Collana

Control, Systems and Industrial Engineering Series

Disciplina

003.85

Soggetti

Dynamics - Mathematical models

System analysis - Mathematical models

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Cover; Title Page ; Copyright; Contents; Acknowledgments; Preface; Introduction; Chapter 1: From Diversity to Unexpected Dynamic Performances; 1.1. Introduction; 1.2. An issue raising a technological bottle-neck; 1.3. An aim liable to answer to the issue; 1.4. A strategy idea liable to reach the aim; 1.4.1. Why diversity?; 1.4.2. What does diversity imply?; 1.5. On the strategy itself; 1.5.1. The study object; 1.5.2. A pore: its model and its technological equivalent; 1.5.2.1. The model; 1.5.2.2. The technological equivalent; 1.5.3. Case of identical pores; 1.5.4. Case of different pores

1.5.4.1. On differences coming from regional heritage1.5.4.1.1 Differences of technological origin; 1.5.4.1.2. A difference of natural origin; 1.5.4.1.3. How is difference expressed?; 1.5.4.2. Transposition to the study object; 1.6. From physics to mathematics; 1.6.1. An unusual model of the porous face; 1.6.1.1. A smoothing remarkable of simplicity: the one of crenels; 1.6.1.2. A non-integer derivative as a smoothing result; 1.6.1.3. An original heuristic verification of differentiation non-integer order; 1.6.2. A just as unusual model governing water relaxation



1.7.2.1. Taking into account the past1.7.2.2. Memory notion; 1.7.2.3. A diversion through an aspect of human memory; 1.7.2.3.1. The serial position effect; 1.7.2.3.2. A model of the primacy effect; 1.8. On the nature of diversity; 1.8.1. An action level to be defined; 1.8.2. One or several forms of diversity?; 1.8.2.1. Forms based on the invariance of the elements; 1.8.2.2. A singular form based on the time variability of an element; 1.9. From the porous dyke to the CRONE suspension; 1.10. Conclusion; 1.11. Bibliography; Chapter 2: Damping Robustness; 2.1. Introduction

2.2. From ladder network to a non-integer derivative as a water-dyke interface model2.2.1. On the admittance factorizing; 2.2.2. On the asymptotic diagrams at stake; 2.2.3. On the asymptotic diagram exploiting; 2.2.3.1. Step smoothing; 2.2.3.2. Crenel smoothing; 2.2.3.3. A non-integer differentiator as a smoothing result; 2.2.3.4. A non-integer derivative as a water-dyke interface model; 2.3. From a non-integer derivative to a non-integer differential equation as a model governing water relaxation; 2.3.1. Flow-pressure differential equation

2.3.2. A non-integer differential equation as a model governing relaxation

Sommario/riassunto

Based on a structured approach to diversity, notably inspired by various forms of diversity of natural origins, Diversity and Non-integer Derivation Applied to System Dynamics provides a study framework to the introduction of the non-integer derivative as a modeling tool. Modeling tools that highlight unsuspected dynamical performances (notably damping performances) in an ""integer"" approach of mechanics and automation are also included. Written to enable a two-tier reading, this is an essential resource for scientists, researchers, and industrial engineers interested in this subject area. Ta