1.

Record Nr.

UNINA990010094490403321

Autore

Fondazione Rosselli

Titolo

Nuove tendenze nei teatri di prosa : presenze del pubblico, offerta teatrale, quadro normativo, politiche di marketing / una ricerca della Fondazione Rosselli per il Teatro Eliseo

Pubbl/distr/stampa

Venezia : Marsilio : Teatro Eliseo, 2004

ISBN

88-317-8536-2

Descrizione fisica

133 p. ; 22 cm

Collana

Ricerche

Locazione

FARBC

Collocazione

INU B 1

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNISA990000448560203316

Autore

BREALEY, Richard A.

Titolo

Principi di finanza aziendale / Richard A. Brealey, Stewart C. Myers ; edizione italiana a cura di Sandro Sandri ; traduzione di Brunella Bordoni... et al.

Pubbl/distr/stampa

Milano : McGraw-Hill, 1990

ISBN

88-386-0628-5

Descrizione fisica

XXXII, 926 p. ; 24 cm

Altri autori (Persone)

MYERS, Stewart C.

Disciplina

658.15

Soggetti

Finanza aziendale - Manuali

Collocazione

658.15 BRE 3a (TESTI 968)

TESTI 968

658.15 BRE 3 (TESTI 968)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



3.

Record Nr.

UNINA9911019857903321

Autore

Baer M (Michael), <1937->

Titolo

Beyond Born-Oppenheimer : electronic non-adiabatic coupling terms and conical intersections / / by Michael Baer

Pubbl/distr/stampa

Hoboken, N.J., : Wiley, c2006

ISBN

9786610411436

9781280411434

1280411430

9780470327050

0470327057

9780471780083

0471780081

9780471780076

0471780073

Descrizione fisica

1 online resource (254 p.)

Disciplina

541/.28

Soggetti

Molecular dynamics - Mathematics

Born-Oppenheimer approximation

Adiabatic invariants

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

BEYOND BORN-OPPENHEIMER; CONTENTS; PREFACE; ABBREVIATIONS; 1 MATHEMATICAL INTRODUCTION; 1.1 Hilbert Space; 1.1.1 Eigenfunction and Electronic Nonadiabatic Coupling Term; 1.1.2 Abelian and Non-Abelian Curl Equations; 1.1.3 Abelian and Non-Abelian Divergence Equations; 1.2 Hilbert Subspace; 1.3 Vectorial First-Order Differential Equation and Line Integral; 1.3.1 Vectorial First-Order Differential Equation; 1.3.1.1 Study of Abelian Case; 1.3.1.2 Study of Non-Abelian Case; 1.3.1.3 Orthogonality; 1.3.2 Integral Equation; 1.3.2.1 Integral Equation along an Open Contour

1.3.2.2 Integral Equation along a Closed Contour1.3.3 Solution of Differential Vector Equation; 1.4 Summary and Conclusions; Problem; References; 2 BORN-OPPENHEIMER APPROACH: DIABATIZATION AND



TOPOLOGICAL MATRIX; 2.1 Time-Independent Treatment; 2.1.1 Adiabatic Representation; 2.1.2 Diabatic Representation; 2.1.3 Adiabatic-to-Diabatic Transformation; 2.1.3.1 Transformation for Electronic Basis Sets; 2.1.3.2 Transformation for Nuclear Wavefunctions; 2.1.3.3 Implications Due to Adiabatic-to-Diabatic Transformation; 2.1.3.4 Final Comments; 2.2 Application of Complex Eigenfunctions

2.2.1 Introducing Time-Independent Phase Factors2.2.1.1 Adiabatic Schrödinger Equation; 2.2.1.2 Adiabatic-to-Diabatic Transformation; 2.2.2 Introducing Time-Dependent Phase Factors; 2.3 Time-Dependent Treatment; 2.3.1 Time-Dependent Perturbative Approach; 2.3.2 Time-Dependent Nonperturbative Approach; 2.3.2.1 Adiabatic Time-Dependent Electronic Basis Set; 2.3.2.2 Adiabatic Time-Dependent Nuclear Schrödinger Equation; 2.3.2.3 Time-Dependent Adiabatic-to-Diabatic Transformation; 2.3.3 Summary; Problem; 2A Appendixes; 2A.1 Dressed Nonadiabatic Coupling Matrix

2A.2 Analyticity of Adiabatic-to-Diabatic Transformation Matrix à in Spacetime ConfigurationReferences; 3 MODEL STUDIES; 3.1 Treatment of Analytical Models; 3.1.1 Two-State Systems; 3.1.1.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.1.2 Topological (D) Matrix; 3.1.1.3 The Diabatic Potential Matrix; 3.1.2 Three-State Systems; 3.1.2.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.2.2 Topological Matrix; 3.1.3 Four-State Systems; 3.1.3.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.3.2 Topological Matrix; 3.1.4 Comments Related to General Case

4.3 Quantization of Nonadiabatic Coupling Matrix: Study of Ab Initio Molecular Systems

Sommario/riassunto

INTRODUCING A POWERFUL APPROACH TO DEVELOPING RELIABLE QUANTUM MECHANICAL TREATMENTS OF A LARGE VARIETY OF PROCESSES IN MOLECULAR SYSTEMS.The Born-Oppenheimer approximation has been fundamental to calculation in molecular spectroscopy and molecular dynamics since the early days of quantum mechanics. This is despite well-established fact that it is often not valid due to conical intersections that give rise to strong nonadiabatic effects caused by singular nonadiabatic coupling terms (NACTs). In Beyond Born-Oppenheimer, Michael Baer, a leading authority on molecular scattering theory an