1.

Record Nr.

UNINA990010012860403321

Autore

Fondi, Mario <1923-2012>

Titolo

Da Penna S. Andrea [Risorsa grafica] / Mario Fondi

Pubbl/distr/stampa

S. l. : s. n., [196.]

Descrizione fisica

8 fotografie : col. ; 250 x 200 mm

Locazione

ILFGE

Collocazione

Scat. Fondi 03 Busta 06(008, 4)

Scat. Fondi 03 Busta 06(008, 5)

Scat. Fondi 03 Busta 06(008, 6)

Scat. Fondi 03 Busta 06(008, 7)

Scat. Fondi 03 Busta 06(008, 8)

Scat. Fondi 03 Busta 06(008, 9)

Scat. Fondi 03 Busta 06(008, 10)

Scat. Fondi 03 Busta 06(008, 11)

Lingua di pubblicazione

Italiano

Formato

Grafica

Livello bibliografico

Monografia



2.

Record Nr.

UNISA996495570803316

Titolo

Interpretability of machine intelligence in medical image computing : 5th international workshop, iMIMIC 2022, held in conjunction with MICCAI 2022, Singapore, Singapore, September 22, 2022, proceedings / / edited by Mauricio Reyes, Pedro Henriques Abreu, and Jaime Cardoso

Pubbl/distr/stampa

Singapore : , : Springer, , [2022]

©2022

ISBN

3-031-17976-5

Descrizione fisica

1 online resource (134 pages)

Collana

Lecture Notes in Computer Science ; ; v.13611

Disciplina

616.0754

Soggetti

Computer-assisted surgery

Diagnostic imaging - Data processing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

Intro -- Preface -- Organization -- Contents -- Interpretable Lung Cancer Diagnosis with Nodule Attribute Guidance and Online Model Debugging -- 1 Introduction -- 2 Materials -- 3 Methodology -- 3.1 Collaborative Model Architecture with Attribute-Guidance -- 3.2 Debugging Model with Semantic Interpretation -- 3.3 Explanation by Attribute-Based Nodule Retrieval -- 4 Experiments and Results -- 4.1 Implementation -- 4.2 Quantitative Evaluation -- 4.3 Trustworthiness Check and Interpretable Diagnosis -- 5 Conclusions -- References -- Do Pre-processing and Augmentation Help Explainability? A Multi-seed Analysis for Brain Age Estimation -- 1 Introduction -- 2 Related Work -- 3 Methods -- 4 Results -- 4.1 Performance -- 4.2 Voxel Agreement -- 4.3 Atlas-Based Analyses -- 4.4 Region Validation -- 5 Conclusion -- References -- Towards Self-explainable Transformers for Cell Classification in Flow Cytometry Data -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Architecture -- 3.2 Preprocessing -- 3.3 Loss Function -- 3.4 Data Augmentation -- 4 Experiments -- 4.1 Data -- 4.2 Results -- 5 Conclusion -- References -- Reducing Annotation Need in Self-explanatory Models for Lung Nodule Diagnosis -- 1 Introduction -- 2 Method -- 3 Experimental Results -- 3.1 Prediction



Performance of Nodule Attributes and Malignancy -- 3.2 Analysis of Extracted Features in Learned Space -- 3.3 Ablation Study -- 4 Conclusion -- References -- Attention-Based Interpretable Regression of Gene Expression in Histology -- 1 Introduction -- 2 Methods -- 2.1 Datasets -- 2.2 Multiple Instance Regression of Gene Expression -- 2.3 Attention-Based Model Interpretability -- 2.4 Evaluation of Performance and Interpretability -- 3 Experiments and Results -- 3.1 Network Training -- 3.2 Quantitative Model Evaluation -- 3.3 Attention-Based Identification of Hotspots and Patterns.

3.4 Quantitative Evaluation of the Attention -- 4 Discussion -- 5 Conclusion -- A Description of Selected Genes -- B Detailed Model Evaluation -- C Additional Visualizations -- D Single-Cell Co-expression -- References -- Beyond Voxel Prediction Uncertainty: Identifying Brain Lesions You Can Trust -- 1 Introduction -- 2 Our Framework: Graph Modelization for Lesion Uncertainty Quantification -- 2.1 Monte Carlo Dropout Model and Voxel-Wise Uncertainty -- 2.2 Graph Dataset Generation -- 2.3 GCNN Architecture and Training -- 3 Material and Method -- 3.1 Data -- 3.2 Comparison with Known Approaches -- 3.3 Evaluation Setting -- 3.4 Implementation Details -- 4 Results and Discussion -- 5 Conclusion -- References -- Interpretable Vertebral Fracture Diagnosis -- 1 Introduction -- 1.1 Related Work -- 2 Methodology -- 2.1 Vertebral Fracture Detection -- 2.2 Semantic Concept Extraction (Correlation) -- 2.3 Visualization of Highly Correlating Concepts at Inference -- 3 Experimental Setup -- 4 Results and Discussion -- 4.1 Clinical Meaningfulness of Extracted Semantic Concepts -- 4.2 Single-Inference Concept Visualization -- 5 Conclusion -- References -- Multi-modal Volumetric Concept Activation to Explain Detection and Classification of Metastatic Prostate Cancer on PSMA-PET/CT -- 1 Introduction -- 2 Data -- 3 Method -- 3.1 Preprocessing -- 3.2 Detection -- 3.3 Classification -- 3.4 Explainable AI -- 4 Results -- 4.1 Detection -- 4.2 Classification -- 4.3 Explainable AI -- 5 Discussion -- 6 Conclusion -- References -- KAM - A Kernel Attention Module for Emotion Classification with EEG Data -- 1 Introduction -- 2 Related Work -- 3 Kernel Attention Module -- 4 Experiments -- 5 Conclusion -- References -- Explainable Artificial Intelligence for Breast Tumour Classification: Helpful or Harmful -- 1 Introduction -- 2 Related Work -- 2.1 XAI in Medicine.

3 Model Setup -- 3.1 Data Pre-Processing -- 3.2 Model Architecture -- 4 Explanations -- 4.1 LIME -- 4.2 RISE -- 4.3 SHAP -- 5 Evaluating Explanations -- 5.1 One-Way ANOVA -- 5.2 Kendall's Tau -- 5.3 Radiologist Evaluation -- 5.4 Threats to Validity -- 6 Observations and Discussion -- 6.1 Discussion -- A Appendix -- A.1 Model Training Results -- A.2 Choosing L Parameter for LIME -- A.3 One-Way ANOVA Results -- A.4 Pixel Agreement Statistics -- A.5 Ranked Biased Overlap (RBO) Results -- A.6 Kendall's Tau Results -- A.7 Radiologist Opinions -- A.8 Explanation Examples -- References -- Author Index.