1.

Record Nr.

UNINA990009599600403321

Autore

Istituto geografico militare

Titolo

Venafro [Documento cartografico] / Istituto geografico militare

Pubbl/distr/stampa

Firenze : IGM, s. d.

Descrizione fisica

4 carte ; 42 x 37 su foglio 57 x 52 cm

Collana

Carta d'Italia ; 161, quadrante 3

Locazione

ILFGE

Collocazione

MP Cass.2 161, 3(1)C

MP Cass.2 161, 3(1)C bis

MP Cass.2 161, 3(1)C ter

MP Cass.2 161, 3(3)C

MP Cass.2 161, 3(2)C

MP Cass.2 161, 3(4)C

MP Cass.2 161, 3(4)C bis

Lingua di pubblicazione

Italiano

Formato

Materiale cartografico a stampa

Livello bibliografico

Monografia

Note generali

Il meridiano di riferimento è Monte Mario, Roma

Le carte sono formate dall'ingrandimento della levata al 50000

Ricognizioni generali del 1909

Nota di contenuto

1.: Foglio 161, quadrante 3 tavoletta N.E. - (E1°37'30''-E1°45'/N41°30'-E41°25') 2.: Foglio 161, quadrante 3 tavoletta S.E. - (E1°37'30''-E1°45'/N41°25'-N41°20') 3.: Folgio 161, quadrante 3 tavoletta S.O. - (E1°30'-E1°37'30''/N41°25'-N41°20'') 4.: Folgio 161, quadrante 3 tavoletta N.O. - (E1°30'-E1°37'30''/N41°30'-N41°25')



2.

Record Nr.

UNINA9910895922003321

Titolo

Amtsblatt für den Landkreis Schwandorf / Hrsg. Landratsamt Schwandorf

Pubbl/distr/stampa

Schwandorf, : Landratsamt, 2006-

Descrizione fisica

Online-Ressource

Classificazione

8,1

Disciplina

070

340

914.3

943

Soggetti

Zeitschrift

Amtliche Publikation

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Periodico

Note generali

Fortsetzung der Druck-Ausgabe



3.

Record Nr.

UNINA9910254635603321

Autore

Stickler Benjamin A.

Titolo

Basic Concepts in Computational Physics / / by Benjamin A. Stickler, Ewald Schachinger

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016

ISBN

3-319-27265-9

Edizione

[2nd ed. 2016.]

Descrizione fisica

1 online resource (XVI, 409 p. 95 illus.)

Disciplina

530.1

Soggetti

Physics

Applied mathematics

Engineering mathematics

Computer science - Mathematics

Chemistry, Physical and theoretical

Numerical and Computational Physics, Simulation

Mathematical and Computational Engineering

Computational Mathematics and Numerical Analysis

Theoretical and Computational Chemistry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes Index.

Nota di contenuto

Some Basic Remarks -- Part I Deterministic Methods -- Numerical Differentiation -- Numerical Integration -- The KEPLER Problem -- Ordinary Differential Equations – Initial Value Problems -- The Double Pendulum -- Molecular Dynamics -- Numerics of Ordinary Differential Equations - Boundary Value Problems -- The One-Dimensional Stationary Heat Equation -- The One-Dimensional Stationary SCHRÖDINGER Equation -- Partial Differential Equations -- Part II Stochastic Methods -- Pseudo Random Number Generators -- Random Sampling Methods -- A Brief Introduction to Monte-Carlo Methods -- The ISING Model -- Some Basics of Stochastic Processes -- The Random Walk and Diffusion Theory -- MARKOV-Chain Monte Carlo and the POTTS Model -- Data Analysis -- Stochastic Optimization -- Appendix: The Two-Body Problem -- Solving Non-Linear Equations. The NEWTON Method -- Numerical Solution of Systems of Equations --



Fast Fourier Transform -- Basics of Probability Theory -- Phase Transitions -- Fractional Integrals and Derivatives in 1D -- Least Squares Fit -- Deterministic Optimization.

Sommario/riassunto

This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text. Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.