| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990009347050403321 |
|
|
Autore |
Istituto geografico militare |
|
|
Titolo |
Roccasecca [Documento cartografico] / Istituto geografico militare |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Edizione |
[2 ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 carta ; 44 x 38 su foglio 62 x 53 cm |
|
|
|
|
|
|
Collana |
|
Carta d'Italia ; 160, quadrante 4, tavoletta SE |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale cartografico a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Il meridiano di riferimento è M. Mario, Roma |
Rilievo del 1942 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910962751903321 |
|
|
Autore |
Coxeter H. S. M (Harold Scott Macdonald), <1907-2003.> |
|
|
Titolo |
Geometry revisited / / by H.S.M. Coxeter and S.L. Greitzer |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Washington, DC, : Mathematical Association of America, 1967 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xiv, 193 pages) : digital, PDF file(s) |
|
|
|
|
|
|
Collana |
|
Anneli Lax New Mathematical Library ; ; 19 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Title from publisher's bibliographic system (viewed on 31 May 2016). |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
""Front Cover""; ""Geometry Revisited""; ""Copyright Page""; ""Contents""; ""Preface""; ""Chapter 1. Points and Lines Connected with a Triangle""; ""1.1 The extended Law of Sines""; ""1.2 Ceva�s theorem""; ""1.3 Points of interest""; ""1.4 The incircle and excircles""; ""1.5 The Steiner-Lehmus theorem""; ""1.6 The orthic triangle""; ""1.7 The medial triangle and Euler line""; ""1.8 The nine-point Circle""; ""1.9 Pedal triangles""; ""Chapter 2. Some Properties of Circles""; ""2.1 The power of a point with respect to a circle""; ""2.2 The radical axis of two circles""; ""2.3 Coaxal circles"" |
""2.4 More on the altitudes and orthocenter of a triangle""""2.5 Simson lines""; ""2.6 Ptolemy�s theorem and its extension""; ""2.7 More on Simson lines""; ""2.8 The Butterfly""; ""2.9 Morley�s theorem""; ""Chapter 3. Collinearity and Concurrence""; ""3.1 Quadrangles; Varignon�s theorem""; ""3.2 Cyclic quadrangles; Brahmagupta�s formula""; ""3.3 Napoleon triangles""; ""3.4 Menelaus�s theorem""; ""3.5 Pappus�s theorem""; ""3.6 Perspective triangles; Desargues�s theorem""; ""3.7 Hexagons""; ""3.8 Pascal�s theorem""; ""3.9 Brianchon�s theorem"" |
""Chapter 4. Transformations""""4.1 Translation""; ""4.2 Rotation""; ""4.3 Half-turn""; ""4.4 Reflection""; ""4.5 Fagnano�s problem""; ""4.6 The three jug problem""; ""4.7 Dilatation""; ""4.8 Spiral similarity""; ""4.9 A genealogy of transformations""; ""Chapter 5. An Introduction to Inversive Geometry""; ""5.1 Separation""; ""5.2 Cross ratio""; ""5.3 |
|
|
|
|
|
|
|
|
|
|
|
Inversion""; ""5.4 The inversive plane""; ""5.5 Orthogonality""; ""5.6 Feuerbach�s theorem""; ""5.7 Coaxal circles""; ""5.8 Inversive distance""; ""5.9 Hyperbolic functions""; ""Chapter 6. An Introduction to Projective Geometry"" |
""6.1 Reciprocation""""6.2 The polar circle of a triangle""; ""6.3 Conics""; ""6.4 Focus and directrix""; ""6.5 The projective plane""; ""6.6 Central conics""; ""6.7 Stereographic and gnomonic projection""; ""Hints and Answers to Exercises""; ""References""; ""Glossary""; ""Index""; ""Back Cover"" |
|
|
|
|
|
|
Sommario/riassunto |
|
Among the many beautiful and nontrivial theorems in geometry found here are the theorems of Ceva, Menelaus, Pappus, Desargues, Pascal, and Brianchon. A nice proof is given of Morley's remarkable theorem on angle trisectors. The transformational point of view is emphasized: reflections, rotations, translations, similarities, inversions, and affine and projective transformations. Many fascinating properties of circles, triangles, quadrilaterals, and conics are developed. |
|
|
|
|
|
|
|
| |