1.

Record Nr.

UNINA990008809200403321

Autore

Razzante, Ruben

Titolo

Manuale di diritto dell'informazione e della comunicazione : con riferimenti alla tutela della privacy e all'editoria on-line / Ruben Razzante

Pubbl/distr/stampa

Padova : Cedam, c2008

ISBN

978-88-13-28350-6

Edizione

[4. ed.]

Descrizione fisica

XXX, 475 p. ; 24 cm

Disciplina

342

Locazione

DDA

Collocazione

VI A 785

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910253968503321

Autore

Unpingco José

Titolo

Python for probability, statistics, and machine learning / / by José Unpingco

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016

ISBN

3-319-30717-7

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource

Disciplina

620

Soggetti

Electrical engineering

Applied mathematics

Engineering mathematics

Statistics

Mathematical statistics

Data mining

Communications Engineering, Networks

Mathematical and Computational Engineering

Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences

Probability and Statistics in Computer Science

Data Mining and Knowledge Discovery

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Getting Started with Scientific Python -- Probability -- Statistics -- Machine Learning -- Notation.

Sommario/riassunto

This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and



Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming. Explains how to simulate, conceptualize, and visualize random statistical processes and apply machine learning methods; Connects to key open-source Python communities and corresponding modules focused on the latest developments in this area; Outlines probability, statistics, and machine learning concepts using an intuitive visual approach, backed up with corresponding visualization codes.