1.

Record Nr.

UNINA990008510330403321

Autore

Corso di cultura sull'arte ravennate e bizantina : 42. : <1995

Titolo

42. corso di cultura sull'arte ravennate e bizantina : seminario internazionale sul tema: Ricerche di archeologia cristiana e Bizantina : Ravenna, 14-19 maggio 1995 : in memoria del Prof. Giuseppe Bovini

Pubbl/distr/stampa

Ravenna : Edizioni del Girasole, 1995

ISBN

88-7567-284-9

Descrizione fisica

975 p. : ill. ; 24 cm

Disciplina

937

Locazione

FLFBC

Collocazione

937 CONV RAVENNA 1

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Nell'occhietto: Università degli studi di Bologna. Istituto di antichità ravennati e bizantine



2.

Record Nr.

UNINA9910810786603321

Autore

Katok A. B.

Titolo

Rigidity in higher rank Abelian group actions . Volume 1 Introduction and cocycle problem / / Anatole Katok, Viorel Niţică [[electronic resource]]

Pubbl/distr/stampa

Cambridge : , : Cambridge University Press, , 2011

ISBN

1-107-21888-8

1-283-12735-0

1-139-09229-4

9786613127358

0-511-80355-9

1-139-09178-6

1-139-08998-6

1-139-09088-7

1-139-09280-4

Descrizione fisica

1 online resource (vi, 313 pages) : digital, PDF file(s)

Collana

Cambridge tracts in mathematics ; ; 185

Disciplina

512/.25

Soggetti

Rigidity (Geometry)

Abelian groups

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from publisher's bibliographic system (viewed on 05 Oct 2015).

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

pt. 1. Preliminaries from dynamics and analysis -- pt. 2. Cocycles, cohomology, and rigidity.

Sommario/riassunto

This self-contained monograph presents rigidity theory for a large class of dynamical systems, differentiable higher rank hyperbolic and partially hyperbolic actions. This first volume describes the subject in detail and develops the principal methods presently used in various aspects of the rigidity theory. Part I serves as an exposition and preparation, including a large collection of examples that are difficult to find in the existing literature. Part II focuses on cocycle rigidity, which serves as a model for rigidity phenomena as well as a useful tool for studying them. The book is an ideal reference for applied mathematicians and scientists working in dynamical systems and a



useful introduction for graduate students interested in entering the field. Its wealth of examples also makes it excellent supplementary reading for any introductory course in dynamical systems.