| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990007719900403321 |
|
|
Autore |
Vouin, Robert |
|
|
Titolo |
Droit prive civil et commercial / Par Robert Vouin , Pierre Robino |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Paris : PressUniversitaires de France, 1967 |
|
|
|
|
|
|
|
Edizione |
[3. ed. revue et mise a jour] |
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
"Themis" Manuels de capacite t.2 : Les bi ens-Les obligations- Les Contrats |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
|
|
Collocazione |
|
DPR 7-67/1 |
DPR 7-67/2 |
19-L-94 |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910827647903321 |
|
|
Autore |
Walsh Mark |
|
|
Titolo |
Metrics of positive scalar curvature and generalised Morse functions Part I / / Mark Walsh |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , 2010 |
|
©2010 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (80 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; Number 983 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Curvature |
Morse theory |
Riemannian manifolds |
Algebraic topology |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Volume 209, number 983 (second of 5 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""Abstract""; ""Introduction""; ""0.1. Background""; ""0.2. Main results""; ""0.3. The connection with generalised Morse functions and Part II""; ""0.4. Acknowledgements""; ""Chapter 1. Definitions and Preliminary Results""; ""1.1. Isotopy and concordance in the space of metrics of positive scalar curvature""; ""1.2. Warped product metrics on the sphere""; ""1.3. Torpedo metrics on the disk""; ""1.4. Doubly warped products and mixed torpedo metrics""; ""1.5. Inducing a mixed torpedo metric with an embedding""; ""Chapter 2. Revisiting the Surgery Theorem"" |
""2.1. Surgery and cobordism""""2.2. Surgery and positive scalar curvature""; ""2.3. Outline of the proof of Theorem 2.3""; ""2.4. Part 1 of the proof: Curvature formulae for the first deformation""; ""2.5. Part 2 of the proof: A continuous bending argument""; ""2.6. Part 3 of the proof: Isotoping to a standard product""; ""2.7. Applying Theorem 2.3 over a compact family of psc-metrics""; ""2.8. The proof of Theorem 2.2 (The Improved Surgery Theorem)""; ""Chapter 3. Constructing Gromov-Lawson Cobordisms""; ""3.1. Morse Theory and admissible Morse functions"" |
|
|
|
|
|
|
|
|
|
|
""3.2. A reverse Gromov-Lawson cobordism""""3.3. Continuous families of Morse functions""; ""Chapter 4. Constructing Gromov-Lawson Concordances""; ""4.1. Applying the Gromov-Lawson technique over a pair of cancelling surgeries""; ""4.2. Cancelling Morse critical points: The Weak and Strong Cancellation Theorems""; ""4.3. A strengthening of Theorem 4.2""; ""4.4. Standardising the embedding of the second surgery sphere""; ""Chapter 5. Gromov-Lawson Concordance Implies Isotopy for Cancelling Surgeries""; ""5.1. Connected sums of psc-metrics"" |
""5.2. An analysis of the metric g'', obtained from the second surgery""""5.3. The proof of Theorem 5.1""; ""Chapter 6. Gromov-Lawson Concordance Implies Isotopy in the General Case""; ""6.1. A weaker version of Theorem 0.8""; ""6.2. The proof of the main theorem""; ""Appendix: Curvature Calculations from the Surgery Theorem""; ""Bibliography"" |
|
|
|
|
|
| |