| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990007490590403321 |
|
|
Autore |
Abel, Othenio <1875-1946> |
|
|
Titolo |
Animali del passato / Othenio Abel ; trad. di Lydia e Giuseppe Scortecci |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Milano : Mondadori, c 1942 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9911006687803321 |
|
|
Autore |
Mohammadi B |
|
|
Titolo |
Applied shape optimization for fluids / / Bijan Mohammadi, Olivier Pironneau |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Oxford ; ; New York, : Oxford University Press, c2010 |
|
|
|
|
|
|
|
ISBN |
|
1-5231-2123-8 |
9786612349157 |
1-282-34915-5 |
0-19-157421-X |
|
|
|
|
|
|
|
|
Edizione |
[2nd ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (292 p.) |
|
|
|
|
|
|
Collana |
|
Numerical mathematics and scientific computation |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Fluid dynamics - Mathematics |
Mathematical optimization |
Shape theory (Topology) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents; 1 Introduction; 2 Optimal shape design; 2.1 Introduction; 2.2 Examples; 2.2.1 Minimum weight of structures; 2.2.2 Wing drag optimization; 2.2.3 Synthetic jets and riblets; 2.2.4 Stealth wings; 2.2.5 Optimal breakwater; 2.2.6 Two academic test cases: nozzle optimization; 2.3 Existence of solutions; 2.3.1 Topological optimization; 2.3.2 Suficient conditions for existence; 2.4 Solution by optimization methods; 2.4.1 Gradient methods; 2.4.2 Newton methods; 2.4.3 Constraints; 2.4.4 A constrained optimization algorithm; 2.5 Sensitivity analysis |
2.5.1 Sensitivity analysis for the nozzle problem2.5.2 Numerical tests with freefem++; 2.6 Discretization with triangular elements; 2.6.1 Sensitivity of the discrete problem; 2.7 Implementation and numerical issues; 2.7.1 Independence from the cost function; 2.7.2 Addition of geometrical constraints; 2.7.3 Automatic differentiation; 2.8 Optimal design for Navier-Stokes flows; 2.8.1 Optimal shape design for Stokes flows; 2.8.2 Optimal shape design for Navier-Stokes flows; References; 3 Partial differential equations for fluids; 3.1 Introduction; 3.2 The Navier-Stokes equations |
3.2.1 Conservation of mass3.2.2 Conservation of momentum; 3.2.3 Conservation of energy and and the law of state; 3.3 Inviscid flows; 3.4 Incompressible flows; 3.5 Potential flows; 3.6 Turbulence modeling; 3.6.1 The Reynolds number; 3.6.2 Reynolds equations; 3.6.3 The k - ε model; 3.7 Equations for compressible flows in conservation form; 3.7.1 Boundary and initial conditions; 3.8 Wall laws; 3.8.1 Generalized wall functions for u; 3.8.2 Wall function for the temperature; 3.8.3 k and ε; 3.9 Generalization of wall functions; 3.9.1 Pressure correction |
3.9.2 Corrections on adiabatic walls for compressible flows3.9.3 Prescribing ρ[sub(w)]; 3.9.4 Correction for the Reichardt law; 3.10 Wall functions for isothermal walls; References; 4 Some numerical methods for fluids; 4.1 Introduction; 4.2 Numerical methods for compressible flows; 4.2.1 Flux schemes and upwinded schemes; 4.2.2 A FEM-FVM discretization; 4.2.3 Approximation of the convection fluxes; 4.2.4 Accuracy improvement; 4.2.5 Positivity; 4.2.6 Time integration; 4.2.7 Local time stepping procedure; 4.2.8 Implementation of the boundary conditions |
4.2.9 Solid walls: transpiration boundary condition4.2.10 Solid walls: implementation of wall laws; 4.3 Incompressible flows; 4.3.1 Solution by a projection scheme; 4.3.2 Spatial discretization; 4.3.3 Local time stepping; 4.3.4 Numerical approximations for the k - ε equations; 4.4 Mesh adaptation; 4.4.1 Delaunay mesh generator; 4.4.2 Metric definition; 4.4.3 Mesh adaptation for unsteady flows; 4.5 An example of adaptive unsteady flow calculation; References; 5 Sensitivity evaluation and automatic differentiation; 5.1 Introduction; 5.2 Computations of derivatives; 5.2.1 Finite differences |
5.2.2 Complex variables method |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Examining shape optimization problems for fluids, with the equations needed for their understanding and the simulation of these problems, this text introduces automatic differentiation approximate gradients, and automatic mesh refinement. |
|
|
|
|
|
|
|
| |