1.

Record Nr.

UNINA990007047440403321

Titolo

Les Grands systèmes pénitentiaires actuels : exposé systématique du régime appliqué dans les différents pays / publié sous la direction de Louis Hugueney et Marc Ancel ; sous les auspices du Centre Française de Droit Comparé et avec le concours du Centre National de la Recherche Scientifique

Pubbl/distr/stampa

Paris : Centre Française de Droit Comparé : Recueil Sirey, 1950-55

Descrizione fisica

2 v. ; 24 cm

Collana

Travaux et recherches de l'Institut de droit comparé de l'Université de Paris ; 6 ; 10

Disciplina

365.34

Locazione

FGBC

Collocazione

UNIVERSITÁ 73 (6)

UNIVERSITÁ 73 (10)

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910454339103321

Autore

Krylov Piotr A

Titolo

Modules over discrete valuation domains [[electronic resource] /] / by Piotr A. Krylov and Askar A. Tuganbaev

Pubbl/distr/stampa

Berlin ; ; New York, : de Gruyter, c2008

ISBN

1-282-19654-5

9786612196546

3-11-020578-5

Descrizione fisica

1 online resource (368 p.)

Collana

De Gruyter expositions in mathematics ; ; 43

Altri autori (Persone)

TuganbaevAskar A

Disciplina

512/.42

Soggetti

Modules (Algebra)

Commutative algebra

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Frontmatter -- Contents -- Chapter 1 Preliminaries -- Chapter 2 Basic facts -- Chapter 3 Endomorphism rings of divisible and complete modules -- Chapter 4 Representation of rings by endomorphism rings -- Chapter 5 Torsion-free modules -- Chapter 6 Mixed modules -- Chapter 7 Determinity of modules by their endomorphism rings -- Chapter 8 Modules with many endomorphisms or automorphisms -- Backmatter

Sommario/riassunto

This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra.