|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990006994170403321 |
|
|
Autore |
Ruggieri, Ruggero M. |
|
|
Titolo |
Il Processo di Gano nella "Chanson de Roland" / Ruggero M. Ruggieri |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Pubblicazioni della scuola di Filologia Moderna ; 3 |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910830881603321 |
|
|
Titolo |
Organic thermoelectrics : from materials to devices / / edited by Daoben Zhu |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, Germany : , : Wiley-VCH, , [2023] |
|
©2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-83549-0 |
3-527-83548-2 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (395 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Thermoelectric materials |
Thermoelectricity |
Functional organic materials |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 |
|
|
|
|
|
|
|
|
|
Introduction of Organic Thermoelectrics -- 1.1 Brief Introduction and Historical Overview -- 1.2 Thermoelectric Effect -- 1.2.1 Seebeck Effect -- 1.2.2 Peltier Effect -- 1.2.3 Thomson Effect -- 1.2.4 Other Related Effects -- 1.3 Thermoelectric Parameters -- 1.3.1 Basic Parameters -- 1.3.2 Power Conversion Efficiency and TE Figure‐of‐Merit -- 1.3.2.1 Power Conversion Efficiency -- 1.3.2.2 Thermoelectric Figure‐of‐Merit and Power Factor -- 1.4 Challenges and Perspectives -- References -- Chapter 2 Theoretical Model and Progress of Organic Thermoelectric Materials -- 2.1 Introduction -- 2.2 Charge Transport -- 2.2.1 Basic Charge Transport Model -- 2.2.1.1 Band and Band‐like Transport -- 2.2.1.2 Hopping Transport -- 2.2.2 Boltzmann Transport Theory -- 2.2.3 Trade‐off Relationship Between σ and S -- 2.3 Thermal Transport -- 2.3.1 Electronic Thermal Conductivity -- 2.3.2 Lattice Thermal Conductivity -- 2.4 Theoretical Progress in OTE Materials -- 2.4.1 TE Conversion in Small Molecules -- 2.4.2 TE Conversion in Polymer -- 2.5 Conclusion -- References -- Chapter 3 P‐Type Organic Thermoelectric Materials -- 3.1 Introduction -- 3.2 Charge Transfer Complexes -- 3.3 Conventional Conducting Polymers -- 3.3.1 Polyaniline -- 3.3.2 Polypyrrole -- 3.3.3 Polycarbazole Derivatives -- 3.3.4 PEDOT‐Based Materials -- 3.3.5 Metal-Organic Coordination Polymers -- 3.4 Doped High Mobility Semiconductors -- 3.4.1 Polythiophene‐Based Materials -- 3.4.1.1 Polythiophene -- 3.4.1.2 PBTTT -- 3.4.1.3 P3HT -- 3.4.2 Indacenodithiophene Derivatives -- 3.4.3 Diketopyrrolopyrrole Derivatives -- 3.4.4 Pentacene -- 3.4.5 Metal Phthalocyanines -- 3.4.6 Strategies for Performance Optimization -- 3.5 Perspective -- References -- Chapter 4 N‐Type Organic Thermoelectric Materials -- 4.1 Introduction. |
4.2 Materials and Properties -- 4.2.1 Metal-Organic Coordination Polymers -- 4.2.2 Conjugated Polymers -- 4.2.3 Organic Small Molecules -- 4.3 Strategies for the Performance Optimization -- 4.3.1 Molecular Design -- 4.3.1.1 Molecular Backbones -- 4.3.1.2 Side Chains -- 4.3.2 Dopant -- 4.4 Summary and Perspective -- References -- Chapter 5 Hybrid/Composite Organic Thermoelectric Materials -- 5.1 Introduction -- 5.2 Fundamental Effect and Theory -- 5.2.1 Percolation Theory -- 5.2.2 Interface Effects -- 5.2.3 Energy Filter Effects -- 5.3 Materials and Properties -- 5.3.1 Organic-Inorganic Hybrid Materials -- 5.3.1.1 Te -- 5.3.1.2 Ge -- 5.3.1.3 Bi2Te3 -- 5.3.1.4 Other Inorganic Fillers -- 5.3.2 Polymer‐Carbon Material Composites -- 5.3.2.1 Carbon Nanotubes (CNTs) -- 5.3.2.2 Graphene (GP) and C60 -- 5.3.3 Organic-Organic TE Blends -- 5.3.4 Organic Coordination Based Compounds -- 5.4 Strategies of Hybrid/Composite OTE Materials Fabrication and Optimization -- 5.4.1 Optimizing the Fabrication Techniques -- 5.4.2 Controlling the Multidimensional Structure of the Fillers -- 5.4.3 Modification of Organic Matrix -- 5.5 Conclusion and Perspective -- References -- Chapter 6 Organic Ionic Thermoelectric Materials and Devices -- 6.1 Introduction -- 6.2 Fundamentals of Ionic Thermoelectrics -- 6.2.1 Soret Effect -- 6.2.2 Energy Conversion Mechanisms for Ionic Thermoelectric Materials -- 6.2.2.1 Ionic Thermoelectric Supercapacitors -- 6.2.2.2 Thermogalvanic Cells -- 6.2.3 Ionic Conductivity -- 6.2.4 Ionic Seebeck Coefficient -- 6.2.5 Ionic Thermal Conductivity -- 6.3 Organic i‐TE Materials Based on Electrolytes -- 6.3.1 Liquid Materials -- 6.3.1.1 Solutions -- 6.3.1.2 Ionic Liquids -- 6.3.2 Solid and Quasi‐Solid Materials -- 6.4 Organic i‐TE Materials Based on Mixed Conductors -- 6.5 Organic i‐TE Devices and Applications -- 6.5.1 Thermal‐charged Supercapacitors. |
6.5.2 Heat‐gated Transistors -- 6.5.3 Sensors -- 6.5.4 Generators -- 6.6 Differences Between Ionic and Electronic Thermoelectrics -- 6.7 |
|
|
|
|
|
|
|
Perspectives and Challenges -- References -- Chapter 7 Engineered Doping of Organic Thermoelectric Materials -- 7.1 Introduction -- 7.2 Chemical Doping -- 7.2.1 Doping Mechanism -- 7.2.1.1 Charge Transfer Doping -- 7.2.1.2 Acid-Base Doping -- 7.2.2 Dopant -- 7.2.2.1 p‐Type Dopants -- 7.2.2.2 n‐Type Dopants -- 7.2.3 Doping Method -- 7.2.3.1 Solution‐Based Process -- 7.2.3.2 Thermal Evaporation -- 7.3 Electrochemical Doping -- 7.4 Electric‐Field Induced Interfacial Doping -- 7.5 Photodoping -- 7.6 Doping Strategies for OTE Materials -- 7.6.1 Precise Manipulation of Carrier Concentration and Mobility -- 7.6.2 Tailoring DOS -- 7.6.3 Building Low‐Dimensional Materials -- 7.6.4 Improving Stability -- 7.6.5 Doping OSCs Without Dopants -- 7.6.6 Achieving Homogeneous Doping -- 7.7 Conclusions and Perspectives -- References -- Chapter 8 Organic Thermoelectric Devices -- 8.1 Introduction -- 8.1.1 Device Geometry -- 8.1.2 Performance Parameter -- 8.1.2.1 Power Output -- 8.1.2.2 Cooling Capacity and Heat Flux Density -- 8.1.2.3 Efficiency -- 8.1.3 Process Techniques -- 8.2 Power Generator -- 8.2.1 Flexible Device -- 8.2.2 Fabric Device -- 8.2.3 Stretchable and Self‐Healed Device -- 8.3 Peltier Cooler -- 8.4 Multifunctional Applications -- 8.4.1 Temperature Sensor -- 8.4.2 Photodetector -- 8.4.3 Multifunctional Sensor -- 8.5 Conclusion -- References -- Chapter 9 Single‐Molecule Thermoelectric Devices -- 9.1 Introduction -- 9.2 Fundamental Background and Experimental Techniques -- 9.2.1 Fundamental Background -- 9.2.1.1 Electrical Conductivity -- 9.2.1.2 Seebeck Coefficient -- 9.2.1.3 Thermal Conductivity -- 9.2.1.4 ZT Value -- 9.2.1.5 Theoretical Predictions of Single‐Molecule Thermoelectric Performance. |
9.2.2 Experimental Techniques -- 9.2.2.1 Scanning Tunneling Microscope‐Break Junction (STM‐BJ) -- 9.2.2.2 Mechanically Controlled Break Junction (MCBJ) -- 9.2.2.3 Atomic Force Microscope (AFM) -- 9.2.2.4 Liquid Metal Electrode -- 9.2.2.5 Three Terminal Devices -- 9.2.2.6 Scanning Tunneling Seebeck Microscopy (STSM) -- 9.3 Advances in Single‐Molecule Thermoelectric Devices -- 9.3.1 Seebeck Coefficient Measurements -- 9.3.1.1 Seebeck Coefficient of Atomic Metallic Contacts -- 9.3.1.2 Length Dependence -- 9.3.1.3 Anchor Groups -- 9.3.1.4 Substituent Effects -- 9.3.1.5 Electrode Materials -- 9.3.1.6 Metal Dopants -- 9.3.1.7 Quantum Interference Effects -- 9.3.1.8 Electrostatic Control -- 9.3.2 Thermal Conductance Measurements -- 9.3.3 Peltier Effect Measurements -- 9.4 Perspectives -- References -- Chapter 10 Measurement Techniques of Thermoelectric‐related Performance -- 10.1 Introduction -- 10.2 Measurement of Electrical Conductivity -- 10.2.1 Basic Principle of Four‐Probe Method -- 10.2.2 Determination of Resistivity -- 10.2.2.1 Parallel Electrode Structure -- 10.2.2.2 Van der Pauw Structure -- 10.3 Measurement of Seebeck Coefficient -- 10.3.1 Temperature Difference Creation -- 10.3.2 Temperature Difference Measurement -- 10.3.2.1 Thermocouple -- 10.3.2.2 Thermal Resistance -- 10.3.2.3 Infrared Method -- 10.3.3 Seebeck Voltage Measurement -- 10.3.3.1 Static Method -- 10.3.3.2 Quasi‐Static Method -- 10.3.4 Error Analysis -- 10.4 Measurement of Thermal Conductivity -- 10.4.1 Thermal Conductivity of Bulk Materials -- 10.4.1.1 Absolute and Comparative Techniques -- 10.4.1.2 Pulsed Power Technique -- 10.4.1.3 Transient Plane Source Method -- 10.4.2 Thermal Conductivity of Thin‐Film Materials -- 10.4.2.1 3ω Method -- 10.4.2.2 Transient Thermoreflectance Technique -- 10.4.2.3 Laser Flash Method -- 10.5 Simultaneous Measurement of Key Parameters. |
10.5.1 Measurement Chip -- 10.5.2 Measurement of Key TE Parameters -- 10.6 Determination of Carrier Concentration -- 10.6.1 Field‐Effect Transistor -- 10.6.2 Hall Effect -- 10.7 Determination of Electronic |
|
|
|
|
|
|
|
|
|
|
|
Structure -- 10.7.1 Photoelectron Spectroscopy -- 10.7.1.1 Ultraviolet and X‐Ray Photoelectron Spectroscopy -- 10.7.1.2 Inverse Photoelectron Spectroscopy -- 10.7.1.3 Photoelectron Yield Spectroscopy -- 10.7.2 Optical Spectroscopy -- 10.7.3 Kelvin Probe Force Microscopy -- 10.7.4 Scanning Tunneling Spectroscopy -- 10.7.5 Cycle Voltammetry -- 10.8 Summary -- References -- Index -- EULA. |
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910856700103321 |
|
|
Autore |
De Mauro, Tullio |
|
|
Titolo |
Passione civile / Tullio De Mauro |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Bari ; Roma, : Laterza, 2024 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
| |