| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990005695700403321 |
|
|
Autore |
Brückner, Alexander <1834-1896> |
|
|
Titolo |
3.6.: Pietro il Grande / del dott. Alessandro Brückner ; prima versione italiana di A. Courth |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Milano : Leonardo Vallardi, 1888 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNIORUON00032902 |
|
|
Autore |
HAKKI, Ismail |
|
|
Titolo |
Kur'ane gore Hazreti insanin babasi / Ismail Hakki |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Istanbul, : Ankara Matbaasi, 1934 88 p. ; 18 cm |
|
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910311937803321 |
|
|
Autore |
Shirali Satish |
|
|
Titolo |
A Concise Introduction to Measure Theory / / by Satish Shirali |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2018.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (X, 271 p. 17 illus., 1 illus. in color.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Measure theory |
Calculus |
Functions of real variables |
Measure and Integration |
Real Functions |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di contenuto |
|
Preface -- 1. Preliminaries -- 2. Measure Space and Integral -- 3. Properties of the Integral -- 4. Construction of a Measure. 5. The Counting Measure -- 6. Product Measures -- 7. Differentiation -- 8. The Cantor Set and Function -- Solutions -- References -- Index. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This undergraduate textbook offers a self-contained and concise introduction to measure theory and integration. The author takes an approach to integration based on the notion of distribution. This approach relies on deeper properties of the Riemann integral which may not be covered in standard undergraduate courses. It has certain advantages, notably simplifying the extension to "fuzzy" measures, which is one of the many topics covered in the book. This book will be accessible to undergraduate students who have completed a first course in the foundations of analysis. Containing numerous examples as well as fully solved exercises, it is exceptionally well suited for self-study or as a supplement to lecture courses. |
|
|
|
|
|
|
|
| |