1.

Record Nr.

UNINA990005490200403321

Autore

Rubinstein, Nicolai <1911-2002>

Titolo

Il governo di Firenze sotto i Medici (1434-1494) / Nicolai Rubinstein

Pubbl/distr/stampa

Firenze, : La Nuova Italia, c1971

Descrizione fisica

VIII, 400 p. ; 25 cm

Collana

Il pensiero storico ; 59

Disciplina

945.5054

Locazione

FLFBC

Collocazione

945.5 RUB 3

945.5 RUB 3 BIS

DFT D35 RUBN 01

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910591033503321

Autore

Blokh Alexander M. <1958->

Titolo

Sharkovsky Ordering / / by Alexander M. Blokh, Oleksandr M. Sharkovsky

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022

ISBN

3-030-99125-3

Edizione

[1st ed. 2022.]

Descrizione fisica

1 online resource (114 pages)

Collana

SpringerBriefs in Mathematics, , 2191-8201

Disciplina

514.322

515.35

Soggetti

Dynamics

Difference equations

Functional equations

Topology

Mathematical physics

Dynamical Systems

Difference and Functional Equations

Mathematical Physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Preface -- 1 Coexistence of Cycles for Continuous Interval Maps -- 2 Combinatorial Dynamics on the Interval -- 3 Coexistence of Cycles for One-dimensional Spaces -- 4 Multidimensional Dynamical Systems -- 5 Historical Remarks -- 6 Appendix.

Sommario/riassunto

This book provides a comprehensive survey of the Sharkovsky ordering, its different aspects and its role in dynamical systems theory and applications. It addresses the coexistence of cycles for continuous interval maps and one-dimensional spaces, combinatorial dynamics on the interval and multidimensional dynamical systems. Also featured is a short chapter of personal remarks by O.M. Sharkovsky on the history of the Sharkovsky ordering, the discovery of which almost 60 years ago led to the inception of combinatorial dynamics. Now one of cornerstones of dynamics, bifurcation theory and chaos theory, the Sharkovsky ordering is an important tool for the investigation of



dynamical processes in nature. Assuming only a basic mathematical background, the book will appeal to students, researchers and anyone who is interested in the subject.