| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990005490200403321 |
|
|
Autore |
Rubinstein, Nicolai <1911-2002> |
|
|
Titolo |
Il governo di Firenze sotto i Medici (1434-1494) / Nicolai Rubinstein |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Firenze, : La Nuova Italia, c1971 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
945.5 RUB 3 |
945.5 RUB 3 BIS |
DFT D35 RUBN 01 |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910591033503321 |
|
|
Autore |
Blokh Alexander M. <1958-> |
|
|
Titolo |
Sharkovsky Ordering / / by Alexander M. Blokh, Oleksandr M. Sharkovsky |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2022.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (114 pages) |
|
|
|
|
|
|
Collana |
|
SpringerBriefs in Mathematics, , 2191-8201 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Dynamics |
Difference equations |
Functional equations |
Topology |
Mathematical physics |
Dynamical Systems |
Difference and Functional Equations |
Mathematical Physics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface -- 1 Coexistence of Cycles for Continuous Interval Maps -- 2 Combinatorial Dynamics on the Interval -- 3 Coexistence of Cycles for One-dimensional Spaces -- 4 Multidimensional Dynamical Systems -- 5 Historical Remarks -- 6 Appendix. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book provides a comprehensive survey of the Sharkovsky ordering, its different aspects and its role in dynamical systems theory and applications. It addresses the coexistence of cycles for continuous interval maps and one-dimensional spaces, combinatorial dynamics on the interval and multidimensional dynamical systems. Also featured is a short chapter of personal remarks by O.M. Sharkovsky on the history of the Sharkovsky ordering, the discovery of which almost 60 years ago led to the inception of combinatorial dynamics. Now one of cornerstones of dynamics, bifurcation theory and chaos theory, the Sharkovsky ordering is an important tool for the investigation of |
|
|
|
|
|
|
|
|
|
|
dynamical processes in nature. Assuming only a basic mathematical background, the book will appeal to students, researchers and anyone who is interested in the subject. |
|
|
|
|
|
| |