| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990005015370403321 |
|
|
Autore |
Plowden, Alison |
|
|
Titolo |
Tudor women : Queens and Commoners / Alison Plowden |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London : Weidenfeld and Nicolson, c1979 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
VII, 182 p., [6] c. di tav. ; 23 cm |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9911019311903321 |
|
|
Titolo |
The well-being of farm animals : challenges and solutions / / edited by G. John Benson, Bernard E. Rollin |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Ames, Iowa, : Blackwell, 2004 |
|
|
|
|
|
|
|
ISBN |
|
9786611381783 |
9781281381781 |
1281381780 |
9780470344859 |
0470344857 |
9780470344781 |
0470344784 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (392 p.) |
|
|
|
|
|
|
Collana |
|
Issues in animal bioethics series |
|
|
|
|
|
|
Altri autori (Persone) |
|
BensonG. John |
RollinBernard E |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Animal health |
Veterinary medicine |
Animal welfare |
Livestock - Social aspects |
Animal industry - Moral and ethical aspects |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
The Well-Being o f Farm Animals; Contents; Contributors; Preface; I. Theoretical Framework; 1. The Ethical Imperative to Control Pain and Suffering in Farm Animals; 2. Human-Livestock Interaction; 3. Quality of Life for Farm Animals: Linking Science, Ethics, and Animal Welfare; 4. Pain in Farm Animals: Nature, Recognition, and Management; 5 . A Concept of Welfare Based on Feelings; 6. Meeting Physical Needs: Environmental Management for Well-Being; 7. Principles for Handling Grazing Animals; 8. Principles for the Design of Handling Facilities and Transport Systems |
9. Personnel Management in Agricultural SystemsII. Practical Applications; 10. Production Practices and Well-Being: Beef Cattle; 11. Animal Well-Being in the U.S. Dairy Industry; 12. Production Practices and Well-Being: Swine; 13. Maximizing Well-Being and Minimizing Pain and Suffering: Sheep; 14. Welfare Problems of Poultry; 15. Rethinking Painful Management Practices; 16. Alternatives to Conventional Livestock Production Methods; 17. Euthanasia; Appendix: U.S. and Canadian Veterinary Medical Associations' Positions on Food Animals; Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The Well-Being of Farm Animals: Challenges and Solutions is the first title in Blackwell Publishing Professional's groundbreaking series Issues in Animal Bioethics. This important book examines the ethical and economic importance of production animal well-being and pain management-topics of increasing concern to consumers. The Well-Being of Farm Animals: Challenges and Solutions offers veterinarians, veterinary and agriculture students, animal scientists, and food animal producers both practical methods to enhance farm animal well-being, and greater understanding of the th |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9911042411203321 |
|
|
Autore |
Bowen Christopher R |
|
|
Titolo |
Piezoelectric Materials : Properties, Applications and Devices |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2026 |
|
©2026 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (251 pages) |
|
|
|
|
|
|
Collana |
|
Wiley Series in Materials for Electronic and Optoelectronic Applications Series |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- Chapter 1 Introduction -- 1.1 Active and Sensory Materials for Smart Systems -- 1.2 Energy Harvesting Materials -- 1.3 Multifunctional Materials, Devices, Systems and Structures -- 1.4 Piezoelectric, Pyroelectric and Ferroelectric Materials -- References -- Chapter 2 Piezoelectric Fundamentals -- 2.1 Piezoelectric Materials -- 2.2 Ferroelectric Materials -- 2.2.1 Non-centrosymmetric Unit Cells -- 2.2.2 Lead Zirconate Titanate (Pb(ZrxTi1−x)O3, PZT) Ferroelectrics -- 2.2.3 Ferroelectric Domains -- 2.2.4 Poling of Ferroelectric Materials -- 2.3 Pyroelectric Materials -- 2.4 Piezoelectric Forms: Bulk, Thin Films and Fibre Composites -- 2.4.1 Piezoelectric Composites and Connectivity -- 2.4.2 Active Fibre Composites and Macro-Fibre Composites -- 2.5 Concluding Remarks -- References -- Chapter 3 Properties of Piezoelectric Materials -- 3.1 Introduction -- 3.2 Constitutive Equations -- 3.2.1 Alternative Single-Axis Formulations -- 3.2.2 Multi-Axis Linear Model -- 3.2.2.1 Example Piezoelectric Element -- 3.2.3 Coupling Coefficients -- 3.3 Polarisation-Electric Field Response of a Ferroelectric -- 3.4 Strain-Field Response of a Ferroelectric -- 3.5 Material Properties and Selection of Materials -- 3.5.1 Barium Titanate (BaTiO3) -- 3.5.2 Lead Zirconate Titanate (PZT, Pb (Zr, Ti)O3) -- 3.5.3 Ferroelectric Polymers -- 3.6 Mechanical Depolarisation of Ferroelectric Materials -- 3.7 Creep of Ferroelectric Materials -- 3.8 Strain Limits of Piezoelectric Actuators |
|
|
|
|
|
|
|
|
|
(Expansion) -- 3.9 Strain Limits of Piezoelectric Actuators (Contraction) -- 3.10 Resonance Behaviour of Piezoelectric Materials and Ceramic Structures -- 3.11 Ageing of Ferroelectrics -- 3.12 Temperature Limits and Self-Heating -- 3.13 Cyclic Operation - Frequency Effects. |
3.13.1 Self-Heating Due to Ferroelectric Hysteresis -- 3.13.2 Current Requirements During Frequency Cycling -- 3.14 Thermal Expansion Coefficient -- 3.15 Summary -- References -- Chapter 4 Piezoelectric Actuators -- 4.1 Introduction -- 4.2 Free Displacement and Blocking Force -- 4.3 Single-Layer Actuator -- 4.4 Stack Actuators -- 4.4.1 Actuator Preloading -- 4.4.2 Piezoelectric Stack Actuator Selection Example -- 4.4.3 Optimum Stack Dimensions -- 4.4.4 Piezoelectric Actuator Stack Sizing Guidelines -- 4.5 Rectangular Bending Actuators (Bimorphs) -- 4.5.1 Bimorph Characteristics -- 4.5.2 Other Rectangular Benders -- 4.6 Ring Benders -- 4.6.1 Ring Bender Deformation Analysis -- 4.6.2 Ring Bender Free Displacement and Blocking Force -- 4.6.3 Other Circular Benders -- 4.7 Mechanical Amplification -- 4.8 Complex Actuator Design -- 4.8.1 Motion Accumulation -- 4.8.2 Ultrasonic Motors -- 4.9 Concluding Remarks -- References -- Chapter 5 Sensors -- 5.1 Introduction -- 5.2 Piezoelectric Accelerometers -- 5.2.1 Accelerometer Modes of Operation (Compressive, Shear and Flexural d33 and d15) -- 5.2.2 Material Selection for Accelerometers -- 5.3 Force and Pressure Sensors -- 5.3.1 High-Frequency Capability -- 5.3.2 Sensor Sensitivity -- 5.4 Temperature and Thermal Effects -- 5.5 Hydrophones -- 5.5.1 Background to Hydrostatic Coefficients -- 5.5.2 Derivation of Performance Indicators for Hydrophone Materials -- 5.5.3 Hydrophone Construction -- 5.6 Piezocomposite Sensors -- 5.6.1 Production of Piezoelectric Composites -- 5.7 Conclusions -- References -- Chapter 6 Energy Harvesting -- 6.1 Introduction -- 6.2 Concept of Piezoelectric-Based Energy Harvesting -- 6.3 Piezoelectric Properties and Performance Figures of Merit (FoMs) -- 6.3.1 Derivation of Harvesting Figures of Merit (FoMs) -- 6.3.2 Mechanical Energy Input. |
6.3.3 Converting the Mechanical (Input) into Electrical Energy (Stored) -- 6.3.4 Producing an Output from the Stored Electrical Energy -- 6.4 Case Study: Piezoelectric Hydraulic Ripple Energy Harvesting -- 6.5 Pyroelectric Materials and Thermal Energy Harvesting -- 6.5.1 Performance Figures of Merit for Pyroelectric Harvesting and Sensing -- 6.6 Summary -- References -- Chapter 7 Drive Electronics and Control -- 7.1 Introduction -- 7.2 Op-Amp Circuits -- 7.3 Voltage Amplifiers for Driving Actuators -- 7.4 Charge Amplifiers for Driving Actuators -- 7.5 Regenerative Amplifiers -- 7.6 Position Sensors for Feedback Control -- 7.6.1 Linear Variable Differential Transformer (LVDT) -- 7.6.2 Eddy Current Sensor -- 7.6.3 Capacitive Sensor -- 7.6.4 Laser Triangulation Sensor -- 7.6.5 Strain Gauge Sensor -- 7.7 Closed-Loop Controllers: Case Study -- 7.8 Signal Conditioning for Piezoelectric Sensors -- 7.8.1 Op-Amp Filtering Circuits -- 7.8.2 Signal Conditioning in Detail -- 7.9 Concluding Remarks -- References -- Chapter 8 Case Studies -- 8.1 Introduction -- 8.2 Piezoelectric Valve Actuation -- 8.2.1 Internal Combustion Engine Fuel Injectors -- 8.2.2 Hydraulic Servo Valves -- 8.3 Piezoelectric Pumps -- 8.3.1 Introduction -- 8.3.2 Piezo Pump Example -- 8.4 Vibration Control of Flexible Structures -- 8.4.1 Smart Structure -- 8.4.2 Dynamic Modelling -- 8.4.3 Derivative Feedback Control -- 8.5 A Case Study of Actuator Self-Heating -- 8.5.1 Model for Temperature Increase Due to Hysteresis -- 8.5.2 Testing Actuator Self-Heating -- 8.5.3 Comparing Actuator Test Data with Expected Behaviour from Model -- 8.6 Piezoelectric Actuation of Bistable Morphing Structures -- 8.6.1 Composite Structure Manufacture -- 8.6.2 Actuator Materials and Attachment -- 8.6.3 Change in Laminate Shape in Response to Piezoelectric Actuation -- |
|
|
|
|
|
|
|
|
|
8.7 Force Sensors, Shear Sensors and Hydrophones. |
8.7.1 Freeze Casting to Produce Porous Ceramics -- 8.7.2 Fabrication of Strain Sensor (d31-Mode) -- 8.7.3 d33-Mode and d15-Mode Piezocomposite Sensors -- 8.8 Concluding Remarks -- References -- Index -- EULA. |
|
|
|
|
|
|
Sommario/riassunto |
|
Authoritative reference making piezoelectric materials technology more accessible by crossing the boundary between fundamental materials physics and applied engineering Piezoelectric Materials provides a comprehensive overview of the subject, an important class of smart materials which are useful as both actuators and sensors, covering materials. |
|
|
|
|
|
|
|
| |