1.

Record Nr.

UNINA990004869460403321

Autore

Urries Y Azara, Jose Jordan de

Titolo

Biografìa y estudio critico de Jàuregui / por Josè Jordàn de Urries y Azara

Pubbl/distr/stampa

Madrid, : Sucesores de Rivadeneyra, 1899

Descrizione fisica

VII, 273 p. ; 28 cm

Locazione

FLFBC

Collocazione

PD 340

Lingua di pubblicazione

Spagnolo

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Obra publicada à expensas de la Real Academia Espanola que la premió en pùblico certamen

2.

Record Nr.

UNINA9910299715503321

Autore

Yang Fan

Titolo

Capturing Connectivity and Causality in Complex Industrial Processes / / by Fan Yang, Ping Duan, Sirish L. Shah, Tongwen Chen

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014

ISBN

3-319-05380-9

Edizione

[1st ed. 2014.]

Descrizione fisica

1 online resource (99 p.)

Collana

SpringerBriefs in Applied Sciences and Technology, , 2191-530X

Disciplina

670.42

Soggetti

Computational complexity

Mathematical models

Automatic control

Chemical engineering

Statistics

Complexity

Mathematical Modeling and Industrial Mathematics

Control and Systems Theory

Industrial Chemistry/Chemical Engineering

Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Introduction -- Examples of Applications for Connectivity and Causality Analysis -- Description of Connectivity and Causality -- Capturing Connectivity and Causality from Process Knowledge -- Capturing Causality from Process Data -- Case Studies.

Sommario/riassunto

This brief reviews concepts of inter-relationship in modern industrial processes, biological and social systems. Specifically ideas of connectivity and causality within and between elements of a complex system are treated; these ideas are of great importance in analysing and influencing mechanisms, structural properties and their dynamic behaviour, especially for fault diagnosis and hazard analysis. Fault detection and isolation for industrial processes being concerned with root causes and fault propagation, the brief shows that, process connectivity and causality information can be captured in two ways: ·      from process knowledge: structural modeling based on first-principles structural models can be merged with adjacency/reachability matrices or topology models obtained from process flow-sheets described in standard formats; and ·      from process data: cross-correlation analysis, Granger causality and its extensions, frequency domain methods, information-theoretical methods, and Bayesian networks can be used to identify pair-wise relationships and network topology. These methods rely on the notion of information fusion whereby process operating data is combined with qualitative process knowledge, to give a holistic picture of the system.