| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990004506450403321 |
|
|
Autore |
Grégoire, Henri <1881-1964> |
|
|
Titolo |
Histoire des confesseurs des empereurs, des rois, et d'autres princes, par m. Gregoire ancien eveque de Blois, etc. |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Paris; Londres; Bruxelles : Baudouin freres : Colburn : Lecharlier, Tarlier, 1824 |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNISA996466610903316 |
|
|
Autore |
Baricz Árpád |
|
|
Titolo |
Generalized Bessel Functions of the First Kind [[electronic resource] /] / by Árpád Baricz |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-280-39170-7 |
9786613569622 |
3-642-12230-2 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2010.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XII, 200 p. 15 illus.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Mathematics, , 0075-8434 ; ; 1994 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Special functions |
Functions of complex variables |
Functions of real variables |
Difference equations |
Functional equations |
Special Functions |
Functions of a Complex Variable |
Real Functions |
Difference and Functional Equations |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
and Preliminary Results -- Geometric Properties of Generalized Bessel Functions -- Inequalities Involving Bessel and Hypergeometric Functions. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
In this volume we study the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. Our aim is to present interesting geometric properties and functional inequalities for these generalized Bessel functions. Moreover, we extend many known inequalities involving circular and hyperbolic functions to Bessel and modified Bessel functions. |
|
|
|
|
|
|
|
| |