| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990004181030403321 |
|
|
Autore |
Arnobius <sec. 3.-4.> |
|
|
Titolo |
I sette libri contro i pagani / di Arnobio ; a cura di Renato Laurenti |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Torino : Società ediitrice italiana, 1962 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
In testa al front.: Arnobio |
|
|
|
|
|
|
2. |
Record Nr. |
UNISALENTO991002439379707536 |
|
|
Autore |
Kondo, Dorinne K. |
|
|
Titolo |
Crafting selves : power, gender, and discourses of identity in a Japanese workplace / Dorinne K. Kondo |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Chicago : University of Chicago Press, 1990 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Donna - Giappone - Condizione sociale |
Donna - Giappone - Condizione economica |
Identità di gruppo - Giappone |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Anthropology/Asian Studies"--P. [4] of cover |
|
|
|
|
|
|
Nota di bibliografia |
|
|
|
|
|
|
Nota di contenuto |
|
The Eye/I -- Industries, communities, identities -- Disciplined selves |
|
|
|
|
|
|
|
|
|
|
|
|
|
-- Circles of attachment -- Adding the family flavor -- Company as family? -- The aesthetics and politics of artisanal identities -- Uchi, gender, and part-time work -- The stakes. |
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910154743003321 |
|
|
Autore |
Kauffman Louis H. |
|
|
Titolo |
Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134), Volume 134 / / Louis H. Kauffman, Sostenes Lins |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, NJ : , : Princeton University Press, , [2016] |
|
©1994 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (308 pages) : illustrations |
|
|
|
|
|
|
Collana |
|
Annals of Mathematics Studies ; ; 315 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Knot theory |
Three-manifolds (Topology) |
Invariants |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Contents -- Chapter 1. Introduction -- Chapter 2. Bracket Polynomial, Temperley-Lieb Algebra -- Chapter 3. Jones-Wenzl Projectors -- Chapter 4. The 3-Vertex -- Chapter 5. Properties of Projectors and 3-Vertices -- Chapter 6. θ-Evaluations -- Chapter 7. Recoupling Theory Via Temperley-Lieb Algebra -- Chapter 8. Chromatic Evaluations and the Tetrahedron -- Chapter 9. A Summary of Recoupling Theory -- Chapter 10. A 3-Manifold Invariant by State Summation -- Chapter 11. The Shadow World -- Chapter 12. The Witten-Reshetikhin- Turaev Invariant -- Chapter 13. Blinks ↦ 3-Gems: Recognizing 3-Manifolds -- Chapter 14. Tables of Quantum Invariants -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial |
|
|
|
|
|
|
|
|
|
|
invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds. |
|
|
|
|
|
| |