1.

Record Nr.

UNINA990004088980403321

Autore

De Armas, Frederick Alfred

Titolo

The return of Astraea : an astral-imperial myth in Calderon / Frederick A. De Armas

Pubbl/distr/stampa

Lexington (Kentucky) : The University press of Kentucky, 1986

ISBN

0-8131-1570-1

Descrizione fisica

IX, 262 p. ; 23 cm

Collana

Studies in Romance languages ; 32

Disciplina

862.3

Locazione

FLFBC

Collocazione

862.3 BARCA/S 25

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910158674503321

Autore

Obergrießer Mathias

Titolo

Digitale Werkzeuge zur integrierten Infrastrukturbauwerksplanung : Am Beispiel des Schienen- und Straßenbaus / / von Mathias Obergrießer

Pubbl/distr/stampa

Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer Vieweg, , 2017

ISBN

3-658-16782-3

Edizione

[1st ed. 2017.]

Descrizione fisica

1 online resource (X, 245 S. 148 Abb., 16 Abb. in Farbe.)

Disciplina

720

Soggetti

Construction

Applied mathematics

Engineering mathematics

Civil engineering

Basics of Construction

Mathematical and Computational Engineering

Civil Engineering

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Research"--Cover.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Einführung eines modellgestützten Planungsprozesses im Infrastrukturbau -- Beschreibung geometrischer und parametrisch-assoziativer Modellierungsansätze -- Definition eines infrastruktur-spezifischen Modellierungsleitfadens -- Konzepte zur Umsetzung des parametrisch-assoziativen Infrastrukturinformationsmodells.

Sommario/riassunto

Der Autor entwickelt neue digitale Werkzeuge und Methoden, die eine durchgängige und integrierte Planung einer Infrastrukturmaßnahme anhand eines föderierten Modells ermöglichen. Dabei werden verschiedene Lösungsansätze vorgestellt, die eine Erweiterung der traditionellen Planungsprozesse vorsehen. Mathias Obergrießer fasst diese Methoden und digitalen Werkzeuge zu einem leistungsfähigen Modellierungsleitfaden zusammen, der eine effektive Planung des parametrisch-assoziativen Infrastrukturinformationsmodells erlaubt. Die erfolgreiche Validierung des Leitfadens erfolgt anhand verschiedener Anwendungsbeispiele aus der Praxis. Der Inhalt Einführung eines modellgestützten Planungsprozesses im



Infrastrukturbau Beschreibung geometrischer und parametrisch-assoziativer Modellierungsansätze Definition eines infrastruktur-spezifischen Modellierungsleitfadens Konzepte zur Umsetzung des parametrisch-assoziativen Infrastrukturinformationsmodells Die Zielgruppen Dozierende und Studierende des Bauingenieurwesens Praktiker und Praktikerinnen in Ingenieurbüros Der Autor Mathias Obergrießer ist seit 2008 an der Hochschule Regensburg als Lehrbeauftragter tätig. Seine Forschungsschwerpunkte liegen im Bereich der parametrisch-assoziativen 3D-Infrastrukturinformationsmodellierung sowie in der Integration von geotechnischen Planungsprozessen. Seit 2014 ist er hauptverantwortlicher Tragwerksplaner für Infrastrukturbauwerke im einem deutschen Ingenieurbüro.

3.

Record Nr.

UNINA9910917797503321

Autore

Yau Stephen S. T

Titolo

Principles of Nonlinear Filtering Theory / / by Stephen S.-T. Yau, Xiuqiong Chen, Xiaopei Jiao, Jiayi Kang, Zeju Sun, Yangtianze Tao

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024

ISBN

9783031776847

3031776844

Edizione

[1st ed. 2024.]

Descrizione fisica

1 online resource (477 pages)

Collana

Algorithms and Computation in Mathematics, , 2512-3254 ; ; 33

Altri autori (Persone)

ChenXiuqiong

JiaoXiaopei

KangJiayi

SunZeju

TaoYangtianze

YauStephen S. T

Disciplina

519.23

Soggetti

Stochastic processes

Automatic control

Differential equations

Equacions diferencials

Processos estocàstics

Stochastic Processes

Control and Systems Theory

Differential Equations

Llibres electrònics.



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Preface -- I. Preliminary knowledge -- 1. Probability theory -- 2. Stochastic processes -- 3. Stochastic differential equations -- 4. Optimization -- II. Filtering theory -- 5. The filtering equations -- 6. Estimation algebra -- III. Numerical algorithms -- 7. Yau-Yau algorithm -- 8. Direct methods -- 9. Classical filtering methods -- 10. Estimation algorithms based on deep learning.

Sommario/riassunto

This text presents a comprehensive and unified treatment of nonlinear filtering theory, with a strong emphasis on its mathematical underpinnings. It is tailored to meet the needs of a diverse readership, including mathematically inclined engineers and scientists at both graduate and post-graduate levels. What sets this book apart from other treatments of the topic is twofold. Firstly, it offers a complete treatment of filtering theory, providing readers with a thorough understanding of the subject. Secondly, it introduces updated methodologies and applications that are crucial in today’s landscape. These include finite-dimensional filters, the Yau-Yau algorithm, direct methods, and the integration of deep learning with filtering problems. The book will be an invaluable resource for researchers and practitioners for years to come. With a rich historical backdrop dating back to Gauss and Wiener, the exposition delves into the fundamental principles underpinning the estimation of stochastic processes amidst noisy observations—a critical tool in various applied domains such as aircraft navigation, solar mapping, and orbit determination, to name just a few. Substantive exercises and examples given in each chapter provide the reader with opportunities to appreciate applications and ample ways to test their understanding of the topics covered. An especially nice feature for those studying the subject independent of a traditional course setting is the inclusion of solutions to exercises at the end of the book. The book is structured into three cohesive parts, each designed to build the reader's understanding of nonlinear filtering theory. In the first part, foundational concepts from probability theory, stochastic processes, stochastic differential equations, and optimization are introduced, providing readers with the necessary mathematical background. The second part delves into theoretical aspects of filtering theory, covering topics such as the stochastic partial differential equation governing the posterior density function of the state, and the estimation algebra theory of systems with finite-dimensional filters. Moving forward, the third part of the book explores numerical algorithms for solving filtering problems, including the Yau-Yau algorithm, direct methods, classical filtering algorithms like the particle filter, and the intersection of filtering theory with deep learning.