| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990003967930403321 |
|
|
Autore |
Esposito, Giampiero |
|
|
Titolo |
Quantum gravity in four dimensions / Giampiero Esposito |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Huntington (New York) : Nova Science Publishers, c2001 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNICAMPANIASUN0119184 |
|
|
Autore |
Scarpa, Dario |
|
|
Titolo |
Il conto corrente : [artt . 1823-1833] / Dario Scarpa |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Milano, : Giuffré Francis Lefebvre, 2018 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNISA996466623803316 |
|
|
Autore |
Neuenschwander Daniel <1963-> |
|
|
Titolo |
Probabilities on the Heisenberg group : limit theorems and Brownian motion / / Daniel Neuenschwander |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1996] |
|
©1996 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 1996.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (VIII, 148 p.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Mathematics, , 0075-8434 ; ; 1630 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Brownian motion processes |
Limit theorems (Probability theory) |
Probability measures |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di contenuto |
|
Probability theory on simply connected nilpotent Lie groups -- Brownian motions on H -- Other limit theorems on H. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The Heisenberg group comes from quantum mechanics and is the simplest non-commutative Lie group. While it belongs to the class of simply connected nilpotent Lie groups, it turns out that its special structure yields many results which (up to now) have not carried over to this larger class. This book is a survey of probabilistic results on the Heisenberg group. The emphasis lies on limit theorems and their relation to Brownian motion. Besides classical probability tools, non-commutative Fourier analysis and functional analysis (operator semigroups) comes in. The book is intended for probabilists and analysts interested in Lie groups, but given the many applications of the Heisenberg group, it will also be useful for theoretical phycisists specialized in quantum mechanics and for engineers. |
|
|
|
|
|
|
|
| |