| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990003660490403321 |
|
|
Autore |
Malagodi, Olindo <1870-1934> |
|
|
Titolo |
Imperialismo / Olindo Malagodi |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910818441203321 |
|
|
Autore |
Diderot Denis <1713-1784, > |
|
|
Titolo |
Eléments du système général du monde / / Denis Diderot |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
[Place of publication not identified] : , : Ligaran, , [2015] |
|
©2015 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di contenuto |
|
Couverture; Page de Copyright; Page de titre; Éléments du système général du monde |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Extrait : ""Tout globe tend à parcourir ces différents états, dont le dernier est une dissolution absolue. M. Lasnière ne s'en tient pas à ces grands phénomènes généraux ; il applique ces principes à tous les effets minutieux qui se passent sous nos yeux."" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910637719503321 |
|
|
Autore |
Piccolomini d'Aragona Antonio |
|
|
Titolo |
Prawitz's Epistemic Grounding : An Investigation into the Power of Deduction / / by Antonio Piccolomini d’Aragona |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9783031202940 |
9783031202933 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2023.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (284 pages) |
|
|
|
|
|
|
Collana |
|
Synthese Library, Studies in Epistemology, Logic, Methodology, and Philosophy of Science, , 2542-8292 ; ; 469 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Logic |
Logic, Symbolic and mathematical |
Knowledge, Theory of |
Mathematics - Philosophy |
Mathematical Logic and Foundations |
Epistemology |
Philosophy of Mathematics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
1. Introduction -- Part I. The idea of epistemic grounding. 2. From models to evidence -- 3. Valid arguments and proofs -- 4. Prawitz’s theory of grounds -- Part II. Formal epistemic grounding. 5. Languages of grounding -- 6. Systems of grounding -- 7. Completeness and recognizability -- 8. Conclusion -- Bibliography. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book presents an in-depth and critical reconstruction of Prawitz’s epistemic grounding, and discusses it within the broader field of proof-theoretic semantics. The theory of grounds is also provided with a formal framework, through which several relevant results are proved. Investigating Prawitz’s theory of grounds, this work answers one of the most fundamental questions in logic: why and how do some inferences have the epistemic power to compel us to accept their conclusion, if we have accepted their premises? Prawitz proposes an innovative |
|
|
|
|
|
|
|
|
|
|
description of inferential acts, as applications of constructive operations on grounds for the premises, yielding a ground for the conclusion. The book is divided into three parts. In the first, the author discusses the reasons that have led Prawitz to abandon his previous semantics of valid arguments and proofs. The second part presents Prawitz’s grounding as found in his ground-theoretic papers. Finally, in the third part, a formal apparatus is developed, consisting of a class of languages whose terms are equipped with denotation functions associating them to operations and grounds, as well as of a class of systems where important properties of the terms can be proved. |
|
|
|
|
|
| |