1.

Record Nr.

UNINA990003322020403321

Autore

Heaton, John Brian

Titolo

Longman dictionary of common errors : workbook / J.B.Heaton and N.D.Turton

Pubbl/distr/stampa

Harlow, : Longman, 1989

ISBN

0-582-36410-5

Descrizione fisica

63 p. ; 25 cm

Altri autori (Persone)

Turton, Nigel D.

Disciplina

423

Locazione

DECLI

Collocazione

423 HEA

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910483981803321

Autore

Brasselet Jean-Paul

Titolo

Vector fields on singular varieties / / Jean-Paul Brasselet, Jose Seade, Tatsuo Suwa

Pubbl/distr/stampa

Heidelberg ; ; New York, : Springer, c2009

ISBN

9783642052057

3642052053

Edizione

[1st ed. 2009.]

Descrizione fisica

1 online resource (XX, 232 p.)

Collana

Lecture notes in mathematics, , 0075-8434 ; ; 1987

Altri autori (Persone)

SeadeJ (Jose)

SuwaT <1942-> (Tatsuo)

Disciplina

515.94

Soggetti

Singularities (Mathematics)

Vector fields

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

The Case of Manifolds -- The Schwartz Index -- The GSV Index -- Indices of Vector Fields on Real Analytic Varieties -- The Virtual Index -- The Case of Holomorphic Vector Fields -- The Homological Index and Algebraic Formulas -- The Local Euler Obstruction -- Indices for 1-Forms -- The Schwartz Classes -- The Virtual Classes -- Milnor Number and Milnor Classes -- Characteristic Classes of Coherent Sheaves on Singular Varieties.

Sommario/riassunto

Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.