1.

Record Nr.

UNINA990003176490403321

Titolo

A Reader's Guide to the Social Sciences / Edited by Bert F. Hoselitz ; with chapters by Peter M. Blau...[et al.].

Pubbl/distr/stampa

New York : Free Press, 1970

Edizione

[Revised ed.]

Descrizione fisica

XIV, 425 p. ; 24 cm

Disciplina

10100

Locazione

SES

Collocazione

10100 REA/70

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910450220803321

Titolo

Machine learning applications in software engineering [[electronic resource] /] / editors, Du Zhang, Jeffrey J.P. Tsai

Pubbl/distr/stampa

Hackensack,  N.J. ; ; Hong Kong, : World Scientific, c2005

ISBN

1-281-37255-2

9786611372552

981-256-927-8

Descrizione fisica

1 online resource (367 p.)

Collana

Series on software engineering and knowledge engineering ; ; v. 16

Altri autori (Persone)

ZhangDu

TsaiJeffrey J.-P

Disciplina

006.31

Soggetti

Software engineering

Computer software - Quality control

Computer software - Evaluation

Machine learning

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 345-355) and index.

Nota di contenuto

ACKNOWLEDGMENT; TABLE OF CONTENTS; Chapter 1 Introduction to Machine Learning and Software Engineering; Chapter 2 ML Applications in Prediction and Estimation; Chapter 3 ML Applications in Property and Model Discovery; Chapter 4 ML Applications in Transformation; Chapter 5 ML Applications in Generation and Synthesis; Chapter 6 ML Applications in Reuse; Chapter 7 ML Applications in Requirement Acquisition; Chapter 8 ML Applications in Management of Development Knowledge; Chapter 9 Guidelines and Conclusion; References

Sommario/riassunto

Machine learning deals with the issue of how to build computerprograms that improve their performance at some tasks throughexperience. Machine learning algorithms have proven to be of greatpractical value in a variety of application domains. Not surprisingly,the field of software engineering turns out to be a fertile groundwhere many software development and maintenance tasks could beformulated as learning problems and approached in terms of learningalgorithms.