| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910482684403321 |
|
|
Autore |
Højne Hans |
|
|
Titolo |
De natali domini et salvatoris nostri Jesu Christi, carmen, Joannis Höyni Ripensis Dani, pro strena novi anni, dictatum nobili, & generoso iuveni, Joanni Oxo ex Dania, item, Psalmus 98. carmine ab eodem ad idem festum, redditus, accessit & de eodem natali, carmen Jacobi [Severini] Ripensis, Dani, his adiectum est carmen Joannis Høyni, superiori anno scriptum ad Nicolaum Laurentii Scauenium, Danum .. [[electronic resource]] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Wittenberg, : [s.n.], 1550 |
|
|
|
|
|
|
|
Descrizione fisica |
|
Online resource (1 bd. (sign. A til B[iiii])) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Reproduction of original in Det Kongelige Bibliotek / The Royal Library (Copenhagen). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA990002794850403321 |
|
|
Autore |
Grinaker, R.l. |
|
|
Titolo |
Short audit case. / by R.L. Grinaker and B. B. Barr |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Homewood (Illinois), : Irwin, 1964 |
|
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910254326403321 |
|
|
Autore |
Klyatskin Valery I |
|
|
Titolo |
Fundamentals of Stochastic Nature Sciences / / by Valery I. Klyatskin |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2017.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XII, 190 p. 62 illus., 11 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Understanding Complex Systems, , 1860-0832 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Computational complexity |
Statistical physics |
Dynamics |
Geotechnical engineering |
Complexity |
Complex Systems |
Geotechnical Engineering & Applied Earth Sciences |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Two-dimensional geophysical fluid dynamics.- Parametrically excited |
|
|
|
|
|
|
|
|
|
|
|
dynamic systems.- Examples of stochastic dynamic systems.- Statistical characteristics of a random velocity field u(r, t).- Lognormal processes, intermittency, and dynamic localization -- Stochastic parametric resonance -- Wave localization in randomly layered media -- Lognormal fields, statistical topography, and clustering -- Stochastic transport phenomena in a random velocity field -- Parametrically excited dynamic systems with Gaussian pumping -- Conclusion. |
|
|
|
|
|
|
Sommario/riassunto |
|
This book addresses the processes of stochastic structure formation in two-dimensional geophysical fluid dynamics based on statistical analysis of Gaussian random fields, as well as stochastic structure formation in dynamic systems with parametric excitation of positive random fields f(r,t) described by partial differential equations. Further, the book considers two examples of stochastic structure formation in dynamic systems with parametric excitation in the presence of Gaussian pumping. In dynamic systems with parametric excitation in space and time, this type of structure formation either happens – or doesn’t! However, if it occurs in space, then this almost always happens (exponentially quickly) in individual realizations with a unit probability. In the case considered, clustering of the field f(r,t) of any nature is a general feature of dynamic fields, and one may claim that structure formation is the Law of Nature for arbitrary random fields of such type. The study clarifies the conditions under which such structure formation takes place. To make the content more accessible, these conditions are described at a comparatively elementary mathematical level by employing ideas from statistical topography. |
|
|
|
|
|
|
|
| |