| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990002651860403321 |
|
|
Titolo |
Sette chiavi per il futuro : nuovo materiali e tecnologie per il 2000.basato sui rapporti dello Stanford Research Institute / di F a bio Magrino |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Milano : Il Sole 24 ore, 1988 8 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910970827103321 |
|
|
Autore |
Wang Chao |
|
|
Titolo |
Local Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with Free Boundary |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2021 |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (132 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; v.270 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title page -- Chapter 1. Introduction -- 1.1. Presentation of the problem -- 1.2. Some known results -- 1.3. Main results -- 1.4. Main ideas -- Chapter 2. Tools of paradifferential operators -- 2.1. |
|
|
|
|
|
|
|
|
|
|
|
Paradifferential operators -- 2.2. Functional spaces -- 2.3. Symbolic calculus -- 2.4. Tame estimates in Sobolev space -- 2.5. Tame estimates in Chemin-Lerner spaces -- 2.6. Commutator estimates -- Chapter 3. Parabolic evolution equation -- Chapter 4. Elliptic estimates in a strip -- 4.1. Elliptic boundary problem -- 4.2. Flattening the boundary and paralinearization -- 4.3. Elliptic estimates in Sobolev space -- 4.4. Tame elliptic estimates -- 4.5. Elliptic estimates in Besov space -- 4.6. Interior ^{1, } estimate -- Chapter 5. Dirichlet-Neumann operator -- 5.1. Definition and paralinearization -- 5.2. Sobolev estimate of the remainder -- 5.3. Tame estimate of the remainder -- 5.4. Hölder estimate of the remainder -- Chapter 6. New formulation and paralinearization -- 6.1. New formulation -- 6.2. Paralinearization -- Chapter 7. Estimate of the pressure -- 7.1. ² estimate of the pressure -- 7.2. Hölder estimate of the pressure -- 7.3. Sobolev estimate of the pressure -- 7.4. Estimate of -- Chapter 8. Estimate of the velocity -- 8.1. Sobolev estimate of the velocity -- 8.2. The estimate of the irrotational part -- 8.3. The estimate of the rotational part -- Chapter 9. Proof of break-down criterion -- 9.1. The ¹ energy estimate -- 9.2. Energy estimate of the trace of the velocity and the free surface -- 9.3. Energy estimate of the vorticity -- 9.4. Nonlinear estimates -- 9.5. Energy functional -- 9.6. Proof of Theorem 1.3 -- Chapter 10. Iteration scheme -- 10.1. Strategy -- 10.2. Iteration scheme -- 10.3. Existence of iteration scheme -- Chapter 11. Uniform energy estimates -- 11.1. Set-up -- 11.2. Energy functional. |
11.3. Estimate of the velocity -- 11.4. Estimate of the pressure -- 11.5. Estimates of the remainder of DN operator -- 11.6. Energy estimates -- 11.7. Nonlinear estimates -- 11.8. Completion of the uniform estimate -- Chapter 12. Cauchy sequence and the limit system -- 12.1. Set-up -- 12.2. Elliptic estimates with a parameter -- 12.3. Energy estimates -- 12.4. The limit system -- Chapter 13. From the limit system to the Euler equations -- Chapter 14. Proof of Theorem 1.1 -- 14.1. Construction of approximate smooth solution -- 14.2. Uniform estimates and existence -- 14.3. Uniqueness of the solution -- Acknowledgement -- Bibliography -- Back Cover. |
|
|
|
|
|
|
Sommario/riassunto |
|
"In this paper, we prove the local well-posedness of the free boundary problem for the incompressible Euler equations in low regularity Sobolev spaces, in which the velocity is a Lipschitz function and the free surface belongs to C 3 2+. Moreover, we also present a Beale-Kato-Majda type break-down criterion of smooth solution in terms of the mean curvature of the free surface, the gradient of the velocity and Taylor sign condition"-- |
|
|
|
|
|
|
|
| |