| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990001723040403321 |
|
|
Autore |
Soltner, Dominique |
|
|
Titolo |
Alimentation des animaux domestiques / Dominique Soltner |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Angers : Collection sciences et techniques agricoles, 1987 |
|
|
|
|
|
|
|
Edizione |
[18e ed.] |
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Collection sciences et techniques agricoles |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
60 636.084 SOLD-2 1986 |
60 636.084 SOLD-1 1988 |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Annesso al manuale: Tables de rationnement des bovins, des ovins et, caprins, des chevaux et des porcs. 18 éd. mise a jour avec les normes I.N.R.A. ou "nouvelles normes" pour l'alimentation des ruminants; normes I.T.C.F.-I.T.P. pour l'alimentation des porcs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910819130903321 |
|
|
Autore |
Broto Carles |
|
|
Titolo |
Automorphisms of fusion systems of finite simple groups of lie type / / Carles Broto, Jesper M. Møller, Bob Oliver |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2019] |
|
©2019 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (vi, 163 pages) : illustrations |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; Volume 1267 |
|
|
|
|
|
|
Classificazione |
|
20D0620D2020D4520E4255R35 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Automorphisms of fusion systems of sporadic simple groups"--Title page. |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Sommario/riassunto |
|
"For a finite group G of Lie type and a prime p, we compare the automorphism groups of the fusion and linking systems of G at p with the automorphism group of G itself. When p is the defining characteristic of G, they are all isomorphic, with a very short list of exceptions. When p is different from the defining characteristic, the situation is much more complex, but can always be reduced to a case where the natural map from Out(G) to outer automorphisms of the fusion or linking system is split surjective. This work is motivated in part by questions involving extending the local structure of a group by a group of automorphisms, and in part by wanting to describe self homotopy equivalences of BG[caret]p in terms of Out(G)."-- |
|
|
|
|
|
|
|
| |