1.

Record Nr.

UNINA990001716810403321

Autore

Rovesti, Guido <agronomo>

Titolo

Conserve alimentari vegetali (frutta, ortaggi, funghi e tartufi) / Guido Rovesti

Pubbl/distr/stampa

Casale Monferrato : C. Cassone, 1906

Descrizione fisica

164 p. ; 16 cm

Collana

Biblioteca agraria Ottavi

Disciplina

664

Locazione

FAGBC

Collocazione

60 664 C 5

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910818795303321

Autore

Prakasa Rao B. L. S

Titolo

Statistical inference for fractional diffusion processes / / B.L.S. Prakasa Rao

Pubbl/distr/stampa

Chichester, U.K., : John Wiley & Sons, 2010

ISBN

9786612690372

9780470975763

0470975768

9780470667125

0470667125

9781282690370

128269037X

9780470667132

0470667133

Edizione

[1st ed.]

Descrizione fisica

1 online resource (277 p.)

Collana

Wiley series in probability and statistics

Disciplina

515/.83

Soggetti

Fractional calculus

Probabilities



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. [239]-249) and index.

Nota di contenuto

Statistical Inference for Fractional Diffusion Processes; Contents; Preface; 1 Fractional Brownian motion and related processes; 2 Parametric estimation for fractional diffusion processes; 3 Parametric estimation for fractional Ornstein-Uhlenbeck-type process; 4 Sequential inference for some processes driven by fBm; 5 Nonparametric inference for processes driven by fBm; 6 Parametric inference for some SDEs driven by processes related to fBm; 7 Parametric estimation for processes driven by fractional Brownian sheet; 8 Parametric estimation for processes driven by infinite-dimensional fBm

9 Estimation of self-similarity index10 Filtering and prediction for linear systems driven by fBm; References; Index

Sommario/riassunto

"Statistical Inference for Fractional Diffusion Processes looks at statistical inference for stochastic processes modeled by stochastic differential equations driven by fractional Brownian motion. Other related processes, such as sequential inference, nonparametric and non parametric inference and parametric estimation are also discussed"--