1.

Record Nr.

UNINA990001483740403321

Autore

CERN School of computing : <23. ;  : 2000

Titolo

2000 CERN School of Computing : Marathon, Greece, 17-30 September : proceedings / editor C.E. Vandoni

Pubbl/distr/stampa

GENEVA : CERN, 2000

ISBN

92-9083-178-2

Descrizione fisica

xii, 174 p. : ill. ; 30 cm

Collana

CERN Reports ; 2000-013

Locazione

FI1

Collocazione

8B-107.009

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In testa al front.: CERN Organisation Européenne pour la Recherche Nucléaire, European Organization for Nuclear Research.



2.

Record Nr.

UNISA996466772603316

Autore

Simpson Carlos <1962->

Titolo

Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface / / Carlos Simpson

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Verlag, , [1991]

©1991

ISBN

3-540-46641-X

Edizione

[1st ed. 1991.]

Descrizione fisica

1 online resource (VI, 142 p.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 1502

Disciplina

515.35

Soggetti

Differential equations

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di contenuto

Ordinary differential equations on a Riemann surface -- Laplace transform, asymptotic expansions, and the method of stationary phase -- Construction of flows -- Moving relative homology chains -- The main lemma -- Finiteness lemmas -- Sizes of cells -- Moving the cycle of integration -- Bounds on multiplicities -- Regularity of individual terms -- Complements and examples -- The Sturm-Liouville problem.

Sommario/riassunto

This book concerns the question of how the solution of a system of ODE's varies when the differential equation varies. The goal is to give nonzero asymptotic expansions for the solution in terms of a parameter expressing how some coefficients go to infinity. A particular classof families of equations is considered, where the answer exhibits a new kind of behavior not seen in most work known until now. The techniques include Laplace transform and the method of stationary phase, and a combinatorial technique for estimating the contributions of terms in an infinite series expansion for the solution. Addressed primarily to researchers inalgebraic geometry, ordinary differential equations and complex analysis, the book will also be of interest to applied mathematicians working on asymptotics of singular perturbations and numerical solution of ODE's.