1.

Record Nr.

UNINA990001312660403321

Autore

Serre, Jean-Pierre <1926->

Titolo

Trees / Jean-Pierre Serre

Pubbl/distr/stampa

Berlin : Springer-Verlag, 1980

ISBN

0-387-10103-9

Descrizione fisica

ix, 142 p. ; 25 cm

Disciplina

511

Locazione

MA1

MAS

Collocazione

121-H-6

121-H-7

MXXII-A-70

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910483423303321

Autore

Armaghani Danial Jahed

Titolo

Applications of Artificial Intelligence in Tunnelling and Underground Space Technology / / by Danial Jahed Armaghani, Aydin Azizi

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021

ISBN

981-16-1034-7

Edizione

[1st ed. 2021.]

Descrizione fisica

1 online resource (IX, 70 p. 16 illus., 15 illus. in color.)

Collana

SpringerBriefs in Applied Sciences and Technology, , 2191-5318

Disciplina

622.028

Soggetti

Engineering geology

Statistical physics

Geotechnical engineering

Mathematical statistics

Manufactures

Engineering mathematics

Geoengineering

Statistical Physics

Geotechnical Engineering and Applied Earth Sciences

Mathematical Statistics

Machines, Tools, Processes

Engineering Mathematics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Chapter 1. An Overview of Field Classifications to Evaluate Tunnel Boring Machine Performance -- Chapter 2. Empirical, Statistical and Intelligent Techniques for TBM Performance Prediction. Chapter 3. Developing Statistical Models for Solving Tunnel Boring Machine Performance Problem -- Chapter 4. A Comparative Study of Artificial Intelligence Techniques to Estimate TBM Performance in Various Weathering Zones.

Sommario/riassunto

This book covers the tunnel boring machine (TBM) performance classifications, empirical models, statistical and intelligent-based techniques which have been applied and introduced by the researchers in this field. In addition, a critical review of the available TBM



performance predictive models will be discussed in details. Then, this book introduces several predictive models i.e., statistical and intelligent techniques which are applicable, powerful and easy to implement, in estimating TBM performance parameters. The introduced models are accurate enough and they can be used for prediction of TBM performance in practice before designing TBMs. .