1.

Record Nr.

UNINA990000845630403321

Autore

Davis, Julian L.

Titolo

Wave propagation in solids and fluids / J. L. Davis

Pubbl/distr/stampa

New York : Springer-Verlag, 1988

ISBN

0-387-96739-7

Descrizione fisica

X, 366 p. 58 ill. 23 cm

Disciplina

531

Locazione

FINBN

Collocazione

02 63 B 7

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9911038525703321

Autore

Labjar Najoua

Titolo

Green Hydrogen

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2025

©2026

ISBN

1-394-35670-6

1-394-35669-2

Edizione

[1st ed.]

Descrizione fisica

1 online resource (576 pages)

Altri autori (Persone)

HajjajiSouad El

VermaChandrabhan

DubeyShikha

Disciplina

665.81

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Series Page -- Title Page -- Copyright Page -- Contents --



Preface -- Chapter 1 Green Hydrogen: Fundamentals, Properties, Classifications, Advantages and Challenges -- 1.1 Introduction -- 1.2 Physical and Chemical Properties -- 1.3 Technologies Used to Generate Green Hydrogen -- 1.3.1 Water Electrolysis -- 1.3.1.1 Alkaline Water Electrolysis -- 1.3.1.2 Anion Exchange Membrane (AEM) -- 1.3.1.3 Proton Exchange Membrane Water Electrolysis (PEMWE) -- 1.3.1.4 Solid Oxide Water Electrolysis (SOX) -- 1.3.2 Biomass Pyrolysis -- 1.3.3 Biomass Gasification -- 1.3.4 Steam Reforming of Bio-Feedstocks -- 1.3.5 Biological Process -- 1.3.5.1 Bio-Photolysis of Water -- 1.3.5.2 Photo-Fermentation -- 1.3.5.3 Dark Fermentation -- 1.4 Advantages of Green Hydrogen -- 1.5 Challenges of Green Hydrogen -- 1.6 Conclusion -- References -- Chapter 2 Fundamentals of Green Energy and the Significance of Green Hydrogen -- 2.1 Introduction -- 2.2 Types of Green Energy Sources -- 2.2.1 Hydropower -- 2.2.2 Biomass Energy -- 2.2.3 Solar Energy -- 2.2.4 Wind Energy -- 2.2.5 Geothermal Energy -- 2.3 The Role of Green Energy in Mitigating Climate Change -- 2.4 Green Energy and Green Hydrogen -- 2.5 Green Hydrogen as a Sustainable Energy -- 2.5.1 Green Hydrogen Production by Water Electrolysis Technique -- 2.5.2 Environmental Benefits of Green Hydrogen -- 2.6 Technological and Economic Challenges in Green Energy -- 2.7 Policy and Regulatory Challenges in Green Energy -- 2.8 Technological and Economic Challenges in Green Hydrogen -- 2.9 Conclusion -- References -- Chapter 3 Green Hydrogen and Green Energy Fundamentals and Relative Description -- 3.1 Introduction -- 3.2 Hydrogen Production -- 3.2.1 Production of Hydrogen's Green -- 3.2.1.1 Green Hydrogen Generation Methods: Principles and Required Materials -- 3.2.2 Production's Cost -- 3.3 Green Energy Fundamentals.

3.3.1 Solar Energy -- 3.3.1.1 Photovoltaic -- 3.3.2 Wind Power Plants -- 3.3.2.1 Advantages -- 3.3.2.2 Disadvantages -- 3.3.3 Other Renewable Energy Sources -- 3.3.3.1 Biomass Power Plants -- 3.3.3.2 Geothermal Power -- 3.3.3.3 Hydro Power Plants -- 3.4 Integration of Green Hydrogen in the Energy Ecosystem -- 3.4.1 Hydrogen as a Renewable Energy Resource -- 3.4.1.1 Production Capacity of Hydrogen and Market -- 3.4.1.2 Applications of Hydrogen -- 3.4.2 Energy Storage -- 3.5 Assessment of the Environment and Economy -- 3.5.1 Environment -- 3.5.2 Economic -- 3.6 Conclusion -- References -- Chapter 4 Green Hydrogen Production: Relative Challenges and Opportunities of Different Method -- 4.1 Introduction -- 4.2 Fundamentals of Green Hydrogen Production -- 4.2.1 Electrolysis Processes -- 4.2.2 Renewable Energy Sources for Electrolysis -- 4.3 Technological Advancements in Green Hydrogen Production -- 4.3.1 Alkaline Electrolyzers -- 4.3.2 PEM Electrolyzers -- 4.3.3 Solid Oxide Electrolysis Cells -- 4.3.4 Comparison of Green Hydrogen Production Technologies -- 4.4 Economic and Policy Considerations -- 4.4.1 Cost Analysis of Green Hydrogen Production -- 4.4.2 Government Incentives and Regulations -- 4.5 Economic and Environmental Benefits of Green Hydrogen -- 4.6 Challenges in Green Hydrogen Production -- 4.6.1 Cost -- 4.6.1.1 Capital Cost -- 4.6.2 Efficiency -- 4.6.3 Scale-Up -- 4.7 Policy and Regulatory Frameworks -- 4.8 Case Studies of Successful Green Hydrogen Projects -- 4.9 Prospects and Market Trends -- 4.10 Conclusion -- References -- Chapter 5 Social and Environmental Challenges of Green Hydrogen -- 5.1 Introduction -- 5.1.1 Green Hydrogen -- 5.1.2 From Hues to Emanation -- Color Labeling of Hydrogen -- 5.1.2.1 Gray Hydrogen -- 5.1.2.2 Turquoise Hydrogen -- 5.1.2.3 Blue Hydrogen -- 5.1.2.4 Purple Hydrogen -- 5.1.2.5 White Hydrogen.

5.1.2.6 Green Hydrogen -- 5.2 Literature Survey -- 5.3 Eco-Friendly



Techniques for Producing Hydrogen -- 5.3.1 Thermochemical Routes -- 5.3.1.1 Pyrolysis -- 5.3.1.2 Gasification -- 5.3.1.3 Biomass Pyrolysis -- 5.3.1.4 Steam Reforming of Natural Gas -- 5.3.2 Biological Mechanism or Biochemical Transformation -- 5.3.2.1 Bio-Photolysis -- 5.3.2.2 Fermentations -- 5.3.2.3 Water Splitting Techniques -- 5.4 Challenges -- 5.4.1 Social Challenges -- 5.4.1.1 Social Acceptance -- 5.4.1.2 Affordability -- 5.4.1.3 Education and Awareness -- 5.4.1.4 Public Acceptability and Safety -- 5.4.1.5 Law and Policies -- 5.4.1.6 Higher Expenses -- 5.4.2 Environmental Challenges -- 5.4.2.1 Diminution of Carbon Footprint -- 5.4.2.2 Enhancing Air Quality -- 5.4.2.3 Water Conservation -- 5.4.2.4 Waste Supervision -- 5.4.2.5 Sustainable Fuel Production -- 5.5 Conclusions and Future Recommendations -- References -- Chapter 6 Industrial Scale Challenges of Production and Consumption of Green Hydrogen -- 6.1 Introduction -- 6.2 Social Challenges -- 6.2.1 Public Acceptance -- 6.2.2 Job Creation -- 6.3 Environmental Challenges -- 6.3.1 Carbon Emissions -- 6.3.2 Water Usage -- 6.3.3 Land Use -- 6.4 Policy and Regulatory Challenges -- 6.4.1 Transition and Infrastructure -- 6.4.2 Policy Design -- 6.4.3 Regulatory and Legislative Conditions -- 6.5 Social and Environmental Benefits -- 6.5.1 Environmental Benefits -- 6.5.2 Socio-Economic Benefits -- 6.6 Conclusion -- References -- Chapter 7 Seawater as an Alternative Source for Hydrogen Production -- 7.1 Introduction -- 7.2 Production of Hydrogen from Freshwater -- 7.2.1 Electrolysis Process -- 7.2.2 Renewable Energy-Assisted Production of Hydrogen -- 7.2.3 Electrolysis Technologies Adopted -- 7.2.3.1 Alkaline Electrolysis -- 7.2.3.2 Proton Exchange Membrane PEM -- 7.2.3.3 High-Temperature Electrocatalysts (SORC).

7.3 Hydrogen Production and Water Scarcity -- 7.4 Hydrogen from Seawater -- 7.4.1 Effects of Chloride Ion -- 7.5 Electrocatalysts for OER -- 7.5.1 Metal Oxides -- 7.5.2 Hydroxide Catalysts -- 7.5.3 Metal Phosphides for OER -- 7.5.4 Metal Nitrides for OER -- 7.5.5 Metal Borides for OER -- 7.5.6 Hybrid Electrocatalysts for OER -- 7.6 Electrocatalysts for HER -- 7.6.1 Noble Metal Alloy Electrocatalysts for HER -- 7.6.2 Carbon-Supported Noble Metals for HER -- 7.6.3 MXene-Based Complexes for HER -- 7.6.4 Metal Phosphides for HER -- 7.6.5 Metal Oxides and Hydroxides for HER -- 7.6.6 Metal Nitrides for HER -- 7.6.7 Hybrid Electrocatalysts for HER -- 7.7 Conclusion -- References -- Chapter 8 Green Hydrogen Investments and Financing: Public and Government Investments -- 8.1 Introduction -- 8.2 Financing Sources for Green Hydrogen Projects -- 8.3 Analysis of Factors Driving Investor Attraction to Green Hydrogen -- 8.4 Current State of Investment in Green Hydrogen -- 8.5 Opportunities and Challenges in Financing Green Hydrogen -- 8.6 Conclusion and Perspectives -- References -- Chapter 9 Future of Green Hydrogen: Opportunities and Challenges -- 9.1 Introduction -- 9.2 Green Hydrogen -- 9.3 Opportunities and Challenges for the Future of Green Hydrogen -- 9.3.1 Opportunities for Industry and the Economy -- 9.3.2 Challenges for the Development of Green Hydrogen -- 9.4 Conclusion and Perspectives -- References -- Chapter 10 Green Hydrogen Production at Industrial Scale: Future Challenges and Opportunities -- 10.1 Introduction -- 10.2 Opportunities and Challenges of Green Hydrogen -- 10.2.1 Transportation and Storage Technologies for Green Hydrogen -- 10.2.2 Compressed Hydrogen Storage -- 10.2.2.1 Physical Storage with Storage Containers -- 10.2.2.2 Geological Storage -- 10.2.3 Liquid Hydrogen -- 10.2.4 Ammonia as Green Hydrogen Carrier.

10.2.5 Hydrogen Blending in Pipes for Natural Gas -- 10.3 Conclusion -- References -- Chapter 11 Significant Projects in Production, Storage and Applications of Green Hydrogen Around the World -- 11.1



Introduction to Green Hydrogen Projects -- 11.2 Green Hydrogen Production Projects Around the World -- 11.2.1 Green Hydrogen Production Potential Worldwide -- 11.2.2 Projects Around the World -- 11.2.2.1 Fukushima Hydrogen Energy Research Field (FH2R) -- 11.2.2.2 RESelyser Project -- 11.2.2.3 MEDLYS Project -- 11.2.2.4 ELYGRID Project -- 11.2.2.5 The Hydrogen Office Project -- 11.2.2.6 Wind2hydrogen W2H Project -- 11.2.2.7 Sinopec Zhongyuan Oilfield EOR Project -- 11.2.3 Morocco's Strategy and Its Flagship Green Hydrogen Production Projects -- 11.3 Global Projects for Storing Green Hydrogen -- 11.3.1 Compressed Gas Storage of Hydrogen -- 11.3.1.1 Underground Hydrogen Storage -- 11.3.1.2 Underground Storage in Aquifers -- 11.3.1.3 Underground Storage in Salt Caverns -- 11.3.2 Liquid Hydrogen Storage -- 11.3.2.1 NASA's Kennedy Space Center -- 11.3.2.2 Japan - Australia Partner to Produce Liquid Hydrogen -- 11.3.2.3 Linde Engineering -- 11.3.2.4 BMW Hydrogen -- 11.3.2.5 Hydrogen Storage Using Chemical Hydrides -- 11.3.2.6 Hydrogenous GmbH -- 11.3.2.7 Framatome -- 11.3.2.8 HySA Infrastructure, South Africa -- 11.3.3 Solid State Hydrogen Storage -- 11.3.3.1 GRZ Technologies -- 11.3.3.2 McPhy Energy -- 11.4 Applications of Green Hydrogen in Various Sectors -- 11.4.1 Applications in the Transportation Sector -- 11.4.1.1 Hy2Haul Project -- 11.4.1.2 HyTransit Project -- 11.4.1.3 NamX Project -- 11.4.1.4 Hyship Project -- 11.4.1.5 H2Ports Project -- 11.4.2 Applications in the Industrial Sector -- 11.4.2.1 Ammonia Production Application -- 11.4.2.2 Haldor Topsoe Green Ammonia Project -- 11.4.2.3 HEVO Ammonia Morocco Project -- 11.4.3 Steel Production Applications.

11.4.3.1 H2FUTURE Project.

Sommario/riassunto

Discover the key to a sustainable future with Green Hydrogen , an essential guide for those invested in the innovative potential of green hydrogen production for decarbonization.One of the worldwide objectives for 2050 is to decarbonize the planet.