| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990000558740403321 |
|
|
Autore |
Wilcox, David C. |
|
|
Titolo |
Solutions manual : turbolence modeling for CFD / David C. Wilcox |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
La Canada (USA) : DCW, 1998 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[2. ed.] |
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910456185303321 |
|
|
Autore |
Boyle James <1959-> |
|
|
Titolo |
The public domain [[electronic resource] ] : enclosing the commons of the mind / / James Boyle |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New Haven, : Yale University Press, c2008 |
|
|
|
|
|
|
|
ISBN |
|
1-282-43739-9 |
9786612437397 |
0-300-14275-7 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (315 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Intellectual property |
Public domain (Copyright law) |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
|
|
|
|
|
Nota di contenuto |
|
Why intellectual property? -- Thomas Jefferson writes a letter -- The second enclosure movement -- The Internet threat -- The farmer's tale : an allegory -- I got a mashup -- The enclosure of science and technology : two case studies -- A creative commons -- An evidence-free zone -- An environmentalism for information. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
In this enlightening book James Boyle describes what he calls the range wars of the information age-today's heated battles over intellectual property. Boyle argues that just as every informed citizen needs to know at least something about the environment or civil rights, every citizen should also understand intellectual property law. Why? Because intellectual property rights mark out the ground rules of the information society, and today's policies are unbalanced, unsupported by evidence, and often detrimental to cultural access, free speech, digital creativity, and scientific innovation. Boyle identifies as a major problem the widespread failure to understand the importance of the public domain-the realm of material that everyone is free to use and share without permission or fee. The public domain is as vital to innovation and culture as the realm of material protected by intellectual property rights, he asserts, and he calls for a movement akin to the environmental movement to preserve it. With a clear analysis of issues ranging from Jefferson's philosophy of innovation to musical sampling, synthetic biology and Internet file sharing, this timely book brings a positive new perspective to important cultural and legal debates. If we continue to enclose the "commons of the mind," Boyle argues, we will all be the poorer. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910706852803321 |
|
|
Autore |
Epstein Anita G. <1937-> |
|
|
Titolo |
Conodont color alteration : an index to organic metamorphism / / by Anita G. Epstein, Jack B. Epstein, and Leonard D. Harris |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Washington : , : United States Department of the Interior, Geological Survey, , 1977 |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (iv, 27 pages) : illustrations, maps (some color) |
|
|
|
|
|
|
Collana |
|
Geological Survey professional paper ; ; 995 |
|
|
|
|
|
|
Soggetti |
|
Conodonts |
Earth temperature |
Geological time |
Metamorphism (Geology) |
Paleontology - Paleozoic |
Paleontology - Appalachian Mountains |
Paleontology |
Paleozoic Geologic Period |
Appalachian Mountains |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Title from title screen (viewed October 6, 2014). |
"Experimental and field studies showing the application of conodont color alteration to geothermometry, metamorphism, and structural geology and for assessing hydrocarbon potential." |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references, (pages 25-27). |
|
|
|
|
|
|
|
|
|
|
|
|
|
4. |
Record Nr. |
UNINA9910619281203321 |
|
|
Autore |
Andrei Neculai |
|
|
Titolo |
Modern numerical nonlinear optimization / / Neculai Andrei |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9783031087202 |
9783031087196 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (824 pages) |
|
|
|
|
|
|
Collana |
|
Springer Optimization and Its Applications ; ; v.195 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Mathematical optimization |
Algebras, Linear |
Optimització matemàtica |
Àlgebra lineal |
Llibres electrònics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Contents -- List of Algorithms -- List of Applications -- List of Figures -- List of Tables -- 1: Introduction -- 1.1 Mathematical Modeling: Linguistic Models Versus Mathematical Models -- 1.2 Mathematical Modeling and Computational Sciences -- 1.3 The Modern Modeling Scheme for Optimization -- 1.4 Classification of Optimization Problems -- 1.5 Optimization Algorithms -- 1.6 Collections of Applications for Numerical Experiments -- 1.7 Comparison of Algorithms -- 1.8 The Structure of the Book -- 2: Fundamentals on Unconstrained Optimization. Stepsize Computation -- 2.1 The Problem -- 2.2 Fundamentals on the Convergence of the Line-Search Methods -- 2.3 The General Algorithm for Unconstrained Optimization -- 2.4 Convergence of the Algorithm with Exact Line-Search -- 2.5 Inexact Line-Search Methods -- 2.6 Convergence of the Algorithm with Inexact Line-Search -- 2.7 Three Fortran Implementations of the Inexact Line-Search -- 2.8 Numerical Studies: Stepsize Computation -- 3: Steepest Descent Methods -- 3.1 The Steepest Descent -- Convergence of the Steepest Descent Method for Quadratic Functions -- Inequality of Kantorovich -- Numerical Study -- |
|
|
|
|
|
|
|
|
|
Convergence of the Steepest Descent Method for General Functions -- 3.2 The Relaxed Steepest Descent -- Numerical Study: SDB Versus RSDB -- 3.3 The Accelerated Steepest Descent -- Numerical Study -- 3.4 Comments on the Acceleration Scheme -- 4: The Newton Method -- 4.1 The Newton Method for Solving Nonlinear Algebraic Systems -- 4.2 The Gauss-Newton Method -- 4.3 The Newton Method for Function Minimization -- 4.4 The Newton Method with Line-Search -- 4.5 Analysis of Complexity -- 4.6 The Modified Newton Method -- 4.7 The Newton Method with Finite-Differences -- 4.8 Errors in Functions, Gradients, and Hessians -- 4.9 Negative Curvature Direction Methods -- 4.10 The Composite Newton Method. |
5: Conjugate Gradient Methods -- 5.1 The Concept of Nonlinear Conjugate Gradient -- 5.2 The Linear Conjugate Gradient Method -- The Linear Conjugate Gradient Algorithm -- Convergence Rate of the Linear Conjugate Gradient Algorithm -- Preconditioning -- Incomplete Cholesky Factorization -- Comparison of the Convergence Rate of the Linear Conjugate Gradient and of the Steepest Descent -- 5.3 General Convergence Results for Nonlinear Conjugate Gradient Methods -- Convergence Under the Strong Wolfe Line-Search -- Convergence Under the Wolfe Line-Search -- 5.4 Standard Conjugate Gradient Methods -- Conjugate Gradient Methods with gk+12 in the Numerator of βk -- The Fletcher-Reeves Method -- The CD Method -- The Dai-Yuan Method -- Conjugate Gradient Methods with in the Numerator of βk -- The Polak-Ribière-Polyak Method -- The Hestenes-Stiefel Method -- The Liu-Storey Method -- Numerical Study: Standard Conjugate Gradient Methods -- 5.5 Hybrid Conjugate Gradient Methods -- Hybrid Conjugate Gradient Methods Based on the Projection Concept -- Numerical Study: Hybrid Conjugate Gradient Methods -- Hybrid Conjugate Gradient Methods as Convex Combinations of the Standard Conjugate Gradient Methods -- The Hybrid Convex Combination of LS and DY -- Numerical Study: NDLSDY -- 5.6 Conjugate Gradient Methods as Modifications of the Standard Schemes -- The Dai-Liao Conjugate Gradient Method -- The Conjugate Gradient with Guaranteed Descent (CG-DESCENT) -- Numerical Study: CG-DESCENT -- The Conjugate Gradient with Guaranteed Descent and Conjugacy Conditions and a Modified Wolfe Line-Search (DESCON) -- Numerical Study: DESCON -- 5.7 Conjugate Gradient Methods Memoryless BFGS Preconditioned -- The Memoryless BFGS Preconditioned Conjugate Gradient (CONMIN) -- Numerical Study: CONMIN. |
The Conjugate Gradient Method Closest to the Scaled Memoryless BFGS Search Direction (DK / CGOPT) -- Numerical Study: DK/CGOPT -- 5.8 Solving Large-Scale Applications -- 6: Quasi-Newton Methods -- 6.1 DFP and BFGS Methods -- 6.2 Modifications of the BFGS Method -- 6.3 Quasi-Newton Methods with Diagonal Updating of the Hessian -- 6.4 Limited-Memory Quasi-Newton Methods -- 6.5 The SR1 Method -- 6.6 Sparse Quasi-Newton Updates -- 6.7 Quasi-Newton Methods and Separable Functions -- 6.8 Solving Large-Scale Applications -- 7: Inexact Newton Methods -- 7.1 The Inexact Newton Method for Nonlinear Algebraic Systems -- 7.2 Inexact Newton Methods for Functions Minimization -- 7.3 The Line-Search Newton-CG Method -- 7.4 Comparison of TN Versus Conjugate Gradient Algorithms -- 7.5 Comparison of TN Versus L-BFGS -- 7.6 Solving Large-Scale Applications -- 8: The Trust-Region Method -- 8.1 The Trust-Region -- 8.2 Algorithms Based on the Cauchy Point -- 8.3 The Trust-Region Newton-CG Method -- 8.4 The Global Convergence -- 8.5 Iterative Solution of the Subproblem -- 8.6 The Scaled Trust-Region -- 9: Direct Methods for Unconstrained Optimization -- 9.1 The NELMED Algorithm |
|
|
|
|
|
|
|
-- 9.2 The NEWUOA Algorithm -- 9.3 The DEEPS Algorithm -- 9.4 Numerical Study: NELMED, NEWUOA, and DEEPS -- 10: Constrained Nonlinear Optimization Methods: An Overview -- 10.1 Convergence Tests -- 10.2 Infeasible Points -- 10.3 Approximate Subproblem: Local Models and Their Solving -- 10.4 Globalization Strategy: Convergence from Remote Starting Points -- 10.5 The Refining the Local Model -- 11: Optimality Conditions for Nonlinear Optimization -- 11.1 General Concepts in Nonlinear Optimization -- 11.2 Optimality Conditions for Unconstrained Optimization -- 11.3 Optimality Conditions for Problems with Inequality Constraints -- 11.4 Optimality Conditions for Problems with Equality Constraints. |
11.5 Optimality Conditions for General Nonlinear Optimization Problems -- 11.6 Duality -- 12: Simple Bound Constrained Optimization -- 12.1 Necessary Conditions for Optimality -- 12.2 Sufficient Conditions for Optimality -- 12.3 Methods for Solving Simple Bound Optimization Problems -- 12.4 The Spectral Projected Gradient Method (SPG) -- Numerical Study-SPG: Quadratic Interpolation versus Cubic Interpolation -- 12.5 L-BFGS with Simple Bounds (L-BFGS-B) -- Numerical Study: L-BFGS-B Versus SPG -- 12.6 Truncated Newton with Simple Bounds (TNBC) -- 12.7 Applications -- Application A1 (Elastic-Plastic Torsion) -- Application A2 (Pressure Distribution in a Journal Bearing) -- Application A3 (Optimal Design with Composite Materials) -- Application A4 (Steady-State Combustion) -- Application A6 (Inhomogeneous Superconductors: 1-D Ginzburg-Landau) -- 13: Quadratic Programming -- 13.1 Equality Constrained Quadratic Programming -- Factorization of the Full KKT System -- The Schur-Complement Method -- The Null-Space Method -- Large-Scale Problems -- The Conjugate Gradient Applied to the Reduced System -- The Projected Conjugate Gradient Method -- 13.2 Inequality Constrained Quadratic Programming -- The Primal Active-Set Method -- An Algorithm for Positive Definite Hessian -- Reduced Gradient for Inequality Constraints -- The Reduced Gradient for Simple Bounds -- The Primal-Dual Active-Set Method -- 13.3 Interior Point Methods -- Stepsize Selection -- 13.4 Methods for Convex QP Problems with Equality Constraints -- 13.5 Quadratic Programming with Simple Bounds: The Gradient Projection Method -- The Cauchy Point -- Subproblem Minimization -- 13.6 Elimination of Variables -- 14: Penalty and Augmented Lagrangian Methods -- 14.1 The Quadratic Penalty Method -- 14.2 The Nonsmooth Penalty Method -- 14.3 The Augmented Lagrangian Method. |
14.4 Criticism of the Penalty and Augmented Lagrangian Methods -- 14.5 A Penalty-Barrier Algorithm (SPENBAR) -- The Penalty-Barrier Method -- Global Convergence -- Numerical Study-SPENBAR: Solving Applications from the LACOP Collection -- 14.6 The Linearly Constrained Augmented Lagrangian (MINOS) -- MINOS for Linear Constraints -- Numerical Study: MINOS for Linear Programming -- MINOS for Nonlinear Constraints -- Numerical Study-MINOS: Solving Applications from the LACOP Collection -- 15: Sequential Quadratic Programming -- 15.1 A Simple Approach to SQP -- 15.2 Reduced-Hessian Quasi-Newton Approximations -- 15.3 Merit Functions -- 15.4 Second-Order Correction (Maratos Effect) -- 15.5 The Line-Search SQP Algorithm -- 15.6 The Trust-Region SQP Algorithm -- 15.7 Sequential Linear-Quadratic Programming (SLQP) -- 15.8 A SQP Algorithm for Large-Scale-Constrained Optimization (SNOPT) -- 15.9 A SQP Algorithm with Successive Error Restoration (NLPQLP) -- 15.10 Active-Set Sequential Linear-Quadratic Programming (KNITRO/ACTIVE) -- 16: Primal Methods: The Generalized Reduced Gradient with Sequential Linearization -- 16.1 Feasible Direction Methods -- 16.2 |
|
|
|
|
|
|
|
|
Active Set Methods -- 16.3 The Gradient Projection Method -- 16.4 The Reduced Gradient Method -- 16.5 The Convex Simplex Method -- 16.6 The Generalized Reduced Gradient Method (GRG) -- 16.7 GRG with Sequential Linear or Sequential Quadratic Programming (CONOPT) -- 17: Interior-Point Methods -- 17.1 Prototype of the Interior-Point Algorithm -- 17.2 Aspects of the Algorithmic Developments -- 17.3 Line-Search Interior-Point Algorithm -- 17.4 A Variant of the Line-Search Interior-Point Algorithm -- 17.5 Trust-Region Interior-Point Algorithm -- 17.6 Interior-Point Sequential Linear-Quadratic Programming (KNITRO/INTERIOR) -- 18: Filter Methods -- 18.1 Sequential Linear Programming Filter Algorithm. |
18.2 Sequential Quadratic Programming Filter Algorithm. |
|
|
|
|
|
| |