1.

Record Nr.

UNINA990000510950403321

Autore

Hancock, Scott

Titolo

Design of direct-current machines / Scott Hancock

Pubbl/distr/stampa

Scranton, PA : International Textbook Company, c1933-1934

Descrizione fisica

1 v. (paginaz. varia) : ill. ; 20 cm

Disciplina

621.313'2

Locazione

DINEL

Collocazione

10 F I 99

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910150551003321

Autore

Hora Akihito

Titolo

The limit shape problem for ensembles of Young diagrams / / by Akihito Hora

Pubbl/distr/stampa

Tokyo : , : Springer Japan : , : Imprint : Springer, , 2016

ISBN

4-431-56487-X

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource (IX, 73 p. 9 illus.)

Collana

SpringerBriefs in Mathematical Physics, , 2197-1757 ; ; 17

Disciplina

515.35

Soggetti

Mathematical physics

Topological groups

Lie groups

Group theory

Probabilities

Statistical physics

Dynamics

Mathematical Physics

Topological Groups, Lie Groups

Group Theory and Generalizations

Probability Theory and Stochastic Processes

Complex Systems

Statistical Physics and Dynamical Systems



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1. Introduction -- 2. Prerequisite materials -- 2.1 representations of the symmetric group -- 2.2 free probability -- 2.3 ensembles of Young diagrams -- 3. Analysis of the Kerov—Olshanski algebra -- 3.1 polynomial functions of Young diagrams -- 3.2 Kerov polynomials -- 4. Static model -- 4.1 Plancherel ensemble -- 4.2 Thoma and other ensembles -- 5. Dynamic model -- 5.1 hydrodynamic limit for the Plancherel ensemble.

Sommario/riassunto

This book treats ensembles of Young diagrams originating from group-theoretical contexts and investigates what statistical properties are observed there in a large-scale limit. The focus is mainly on analyzing the interesting phenomenon that specific curves appear in the appropriate scaling limit for the profiles of Young diagrams. This problem is regarded as an important origin of recent vital studies on harmonic analysis of huge symmetry structures. As mathematics, an asymptotic theory of representations is developed of the symmetric groups of degree n as n goes to infinity. The framework of rigorous limit theorems (especially the law of large numbers) in probability theory is employed as well as combinatorial analysis of group characters of symmetric groups and applications of Voiculescu's free probability. The central destination here is a clear description of the asymptotic behavior of rescaled profiles of Young diagrams in the Plancherel ensemble from both static and dynamic points of view.