| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNICAMPANIAVAN0278211 |
|
|
Autore |
Ceulemans, Arnout J. |
|
|
Titolo |
The Theory of the Jahn-Teller Effect : When a Boson meets a Fermion / Arnout Ceulemans |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
xiv, 432 p. : ill. ; 24 cm |
|
|
|
|
|
|
Soggetti |
|
81-XX - Quantum theory [MSC 2020] |
81V45 - Atomic physics [MSC 2020] |
92Exx - Chemistry [MSC 2020] |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNICAMPANIAVAN00260952 |
|
|
Titolo |
Medicamenta : guida teorico-pratica per sanitari. Supplemento alla 5. edizione |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Milano, : Cooperativa farmaceutica, [1956?] |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Soggetti |
|
Dietetica |
Farmacia - Legislazione |
Opoterapia |
Organoterapia |
Ormonoterapia |
Sieroterapia |
Vaccinoterapia |
Veterinaria |
Vitamine |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
|
|
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
3. |
Record Nr. |
UNINA9910832946903321 |
|
|
Autore |
Raji Wissam |
|
|
Titolo |
An Introductory Course in Elementary Number Theory / Wissam Raji, The Saylor Foundation |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
[s.l.] : , : [s.n.], , 2016 |
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (170 p.) |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
These notes serve as course notes for an undergraduate course in number theory.Most if not all universities worldwide offer introductory courses in numbertheory for math majors and in many cases as an elective course.The notes contain a useful introduction to important topics that need to be addressedin a course in number theory. Proofs of basic theorems are presented inan interesting and comprehensive way that can be read and understood even bynon-majors with the exception in the last three chapters where a background inanalysis, measure theory and abstract algebra is required. The exercises are carefullychosen to broaden the understanding of the concepts. Moreover, these notesshed light on analytic number theory, a subject that is rarely seen or approachedby undergraduate students. One of the unique characteristics of these notes is thecareful choice of topics and its importance in the theory of numbers. The freedomis given in the last two chapters because of the advanced nature of the topics thatare presented.Thanks to professor Pavel Guerzhoy from University of Hawaii for his contributionin chapter six on continued fraction and to Professor Ramez Maalouf fromNotre Dame University, Lebanon for his contribution to chapter eight. |
|
|
|
|
|
|
|
| |