| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNIORUON00089073 |
|
|
Autore |
LE_ROY, Christian |
|
|
Titolo |
Les terres cuites architecturales / par Christian Le Roy ; la sculpture décorative en terre cuite / par Jean Ducat |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Paris, : De Boccard, 1967 |
|
|
|
|
|
|
|
Descrizione fisica |
|
308 p. : ill, 84 p. di tav. ; 33 cm. |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
DELFI - Studi |
DECORAZIONE ARCHITETTONICA |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNICAMPANIAVAN0124126 |
|
|
Titolo |
Function Spaces and Inequalities : New Delhi, India, December 2015 / Pankaj Jain, Hans-Jürgen Schmeisser editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore, : Springer, 2017 |
|
|
|
|
|
|
|
Titolo uniforme |
Function Spaces and Inequalities : New Delhi, India, December 2015 |
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Soggetti |
|
46E35 - Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems [MSC 2020] |
47B38 - Linear operators on function spaces (general) [MSC 2020] |
42B25 - Maximal functions, Littlewood-Paley theory [MSC 2020] |
42B35 - Function spaces arising in harmonic analysis [MSC 2020] |
26D10 - Inequalities involving derivatives and differential and integral operators [MSC 2020] |
46E30 - Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc) [MSC 2020] |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
|
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
3. |
Record Nr. |
UNINA9910254581003321 |
|
|
Autore |
Prodan Emil |
|
|
Titolo |
A computational non-commutative geometry program for disordered topological insulators / / by Emil Prodan |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2017.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (X, 118 p. 19 illus. in color.) |
|
|
|
|
|
|
Collana |
|
SpringerBriefs in Mathematical Physics, , 2197-1757 ; ; 23 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Physics |
Mathematical physics |
Condensed matter |
K-theory |
Functional analysis |
Mathematical Methods in Physics |
Mathematical Physics |
Condensed Matter Physics |
K-Theory |
Functional Analysis |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters. |
|
|
|
|
|
|
Nota di contenuto |
|
Disordered Topological Insulators: A Brief Introduction -- Homogeneous Materials -- Homogeneous Disordered Crystals -- Classification of Homogenous Disordered Crystals -- Electron Dynamics: Concrete Physical Models -- Notations and Conventions -- Physical Models -- Disorder Regimes -- Topological Invariants -- The Non-Commutative Brillouin Torus -- Disorder Configurations and Associated Dynamical Systems -- The Algebra of Covariant Physical Observables -- Fourier Calculus -- Differential Calculus -- Smooth Sub-Algebra -- Sobolev Spaces -- Magnetic Derivations -- Physics |
|
|
|
|
|
|
|
|
|
|
|
Formulas -- The Auxiliary C*-Algebras -- Periodic Disorder Configurations -- The Periodic Approximating Algebra -- Finite-Volume Disorder Configurations -- The Finite-Volume Approximating Algebra -- Approximate Differential Calculus -- Bloch Algebras -- Canonical Finite-Volume Algorithm -- General Picture -- Explicit Computer Implementation -- Error Bounds for Smooth Correlations -- Assumptions -- First Round of Approximations -- Second Round of Approximations -- Overall Error Bounds -- Applications: Transport Coefficients at Finite Temperature -- The Non-Commutative Kubo Formula -- The Integer Quantum Hall Effect -- Chern Insulators -- Error Bounds for Non-Smooth Correlations -- The Aizenman-Molchanov Bound -- Assumptions -- Derivation of Error Bounds -- Applications II: Topological Invariants -- Class AIII in d = 1 -- Class A in d = 2 -- Class AIII in d = 3 -- References. |
|
|
|
|
|
|
Sommario/riassunto |
|
This work presents a computational program based on the principles of non-commutative geometry and showcases several applications to topological insulators. Noncommutative geometry has been originally proposed by Jean Bellissard as a theoretical framework for the investigation of homogeneous condensed matter systems. Recently, this approach has been successfully applied to topological insulators, where it facilitated many rigorous results concerning the stability of the topological invariants against disorder. In the first part of the book the notion of a homogeneous material is introduced and the class of disordered crystals defined together with the classification table, which conjectures all topological phases from this class. The manuscript continues with a discussion of electrons’ dynamics in disordered crystals and the theory of topological invariants in the presence of strong disorder is briefly reviewed. It is shown how all this can be captured in the language of noncommutative geometry using the concept of non-commutative Brillouin torus, and a list of known formulas for various physical response functions is presented. In the second part, auxiliary algebras are introduced and a canonical finite-volume approximation of the non-commutative Brillouin torus is developed. Explicit numerical algorithms for computing generic correlation functions are discussed. In the third part upper bounds on the numerical errors are derived and it is proved that the canonical-finite volume approximation converges extremely fast to the thermodynamic limit. Convergence tests and various applications concludes the presentation. The book is intended for graduate students and researchers in numerical and mathematical physics. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. |
Record Nr. |
UNINA9910563185203321 |
|
|
Autore |
May Kay-Uwe |
|
|
Titolo |
Haushaltskonsolidierung durch Ausgabekürzungen : Restriktionen und Strategien / Rolf Caesar, Kay-Uwe May |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Frankfurt a.M, : PH02, 2018 |
|
2018, c2003 |
|
|
|
|
|
|
|
|
|
Edizione |
[1st, New ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (467 p.) : , EPDF |
|
|
|
|
|
|
Collana |
|
Hohenheimer volkswirtschaftliche Schriften ; 42 |
|
|
|
|
|
|
Soggetti |
|
Public administration |
Political economy |
Urban economics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Peter Lang GmbH, Internationaler Verlag der Wissenschaften |
|
|
|
|
|
|
Nota di contenuto |
|
Aus dem Inhalt: Budgetrelevante Entscheidungsstrukturen in Bürokratie und Legislative, Ausgabedruck als Folge, mögliche Lösungen - Dilemmata und Reaktionen bei Budgetkrisen - Erfolgsbedingungen für Ausgabekürzungen - Praxisbeispiele. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Zunehmende Budgetprobleme bedrohen die Handlungsfähigkeit öffentlicher Gebietskörperschaften. Bisherige Arbeiten zur Haushaltskonsolidierung beschränken sich auf deskriptive Argumente. Mit positiver Theorie und im Rahmen der Neuen Politischen Ökonomie analysiert diese Arbeit strukturelle Grundlagen für den permanenten Ausgabedruck und prozessuale Ansätze zur Krisenbewältigung. Erfolgsbedingungen für Ausgabekürzungen können abgeleitet und empirische Fallbeispiele aufgearbeitet werden. |
|
|
|
|
|
|
|
| |