| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNICAMPANIAVAN0115158 |
|
|
Autore |
Dumas, Alexandre <1802-1870> |
|
|
Titolo |
Napoleone / Alexandre Dumas ; prefazione di Luigi Mascilli Migliorini |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
Chi ha presenti le pagine famose che Stendhal dedica alla battaglia di Waterloo nella Certosa di Parma, provi a confrontarle con quelle che nel "Napoleone" di Dumas fanno da epicentro narrativo di tutta la seconda parte. Dove Stendhal sceglie una narrazione in soggettiva, che fa apparire quel grande fatto d'armi un epidosio caotico che la coscienza del protagonista fatica a comprendere, pare quasi, invece, che Dumas stia accanto a Napoleone, guardi la battaglia con gli stessi occhi dell'Imperatore e ne viva in simbiosi il trascorrere delle ore e degli avvenimenti fino al drammatico scioglimento finale." (dalla Prefazione di Luigi Mascilli Migliorini) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910890182503321 |
|
|
Autore |
Skovsmose Ole |
|
|
Titolo |
Critical Philosophy of Mathematics / / by Ole Skovsmose |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2024.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (270 pages) |
|
|
|
|
|
|
Collana |
|
Advances in Mathematics Education, , 1869-4926 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Mathematics - Study and teaching |
Mathematics - Philosophy |
Teachers - Training of |
Mathematics Education |
Philosophy of Mathematics |
Teaching and Teacher Education |
Filosofia de la matemàtica |
Llibres electrònics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Part I. Social Complexities -- Chapter 1. Modernity and the Holocaust -- Chapter 2. Glorification of Science and Mathematics -- Chapter 3. Domination by Technology -- Chapter 4. Globalised Exploitation -- Part II. Isolation and Glorification -- Chapter 5. Mathematics as Logical Tautologies -- Chapter 6. Mathematics as Formal Structures -- Chapter 7. Mathematics as Mental Acts -- Chapter 8. Mathematics as Mathematicians’ Practice -- Part III. Indefinite Constructions -- Chapter 9. Indefinite with Respect to Concepts and Proofs -- Chapter 10. Indefinite with Respect to Topics and Applications -- Chapter 11. Indefinite with Respect to Power -- Chapter 12. Indefinite with Respect to Culture -- Part IV. Ethical Challenges -- Chapter 13. A Performative Interpretation of Mathematics -- Chapter 14. Performatives -- Chapter 15. Action and Ethics -- Chapter 16. Reflective Inquiries in the Classroom. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book provides a philosophy of mathematics that resonates with |
|
|
|
|
|
|
|
|
|
|
critical mathematics education. It draws attention to the social complexities that characterise the period of Modernity including the extreme exploitation of manual workers and their families, brutal forms of colonisations, trading of slaves, and the formation of racist ideologies. It portrays Modernity as a period of contradictions and highlights that mathematics is a part of these contradictions. The text interprets mathematics as being indefinite, seeing that mathematics is a part of the ongoing human constructions. It outlines a performative interpretation of mathematics, portraying mathematics as intrinsically connected to actions. Any kind of action, including mathematics-based actions, calls for ethical considerations and this leads to any mathematical practice, either in research, application, or education, to face ethical challenges. It illustrates with examples how a critical philosophy of mathematics can come to be an integral part of classroom practices. |
|
|
|
|
|
| |