| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991000694029707536 |
|
|
Autore |
Anastassiou, George A. |
|
|
Titolo |
Approximation, probability, and related fields / edited by George Anastassiou and Svetlozar T. Rachev |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York ; London : Plenum Press, c1994 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Classificazione |
|
AMS 41-06 |
AMS 60-06 |
QA221.A643 |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
Rachev, Svetlozar Todorov |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Approximation theory - Congresses |
Probability theory - Congresses |
Stochastic processes - Congresses |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Includes bibliographical references and index. |
"Proceedings of a Conference on Approximation, Probability, and Related Fields, held May 20-22, 1993, in Santa Barbara, California" - T.p. verso |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNICAMPANIAVAN0114979 |
|
|
Autore |
Davis, John H. |
|
|
Titolo |
Methods of applied mathematics with a software overview / Jon H. Davis |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
[Basel], : Birkhäuser, : Springer, 2016 |
|
|
|
|
|
|
|
Titolo uniforme |
Methods of applied mathematics with a MATLAB overview |
|
|
|
|
|
Edizione |
[2. ed] |
|
|
|
|
|
Descrizione fisica |
|
XVII, 781 p. : ill. ; 24 cm |
|
|
|
|
|
|
Soggetti |
|
35-XX - Partial differential equations [MSC 2020] |
42Axx - Harmonic analysis in one variable [MSC 2020] |
30-XX - Functions of a complex variable [MSC 2020] |
65Mxx - Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems [MSC 2020] |
34-XX - Ordinary differential equations [MSC 2020] |
44-XX - Integral transforms, operational calculus [MSC 2020] |
33-XX - Special functions [MSC 2020] |
00A69 - General applied mathematics [MSC 2020] |
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020] |
46Cxx - Inner product spaces and their generalizations, Hilbert spaces [MSC 2020] |
42Cxx - Nontrigonometric harmonic analysis [MSC 2020] |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910299904603321 |
|
|
Autore |
Geiger Bernhard C |
|
|
Titolo |
Information Loss in Deterministic Signal Processing Systems / / by Bernhard C. Geiger, Gernot Kubin |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2018.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XIII, 145 p. 16 illus., 9 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Understanding Complex Systems, , 1860-0832 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Computational complexity |
Signal processing |
Image processing |
Speech processing systems |
Statistical physics |
Dynamics |
Complexity |
Signal, Image and Speech Processing |
Complex Systems |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Part I: Random Variables -- Piecewise Bijective Functions and Continuous Inputs -- General Input Distributions -- Dimensionality-Reducing Functions -- Relevant Information Loss -- II. Part II: Stationary Stochastic Processes -- Discrete-Valued Processes -- Piecewise Bijective Functions and Continuous Inputs -- Dimensionality-Reducing Functions -- Relevant Information Loss Rate -- Conclusion and Outlook. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book introduces readers to essential tools for the measurement and analysis of information loss in signal processing systems. Employing a new information-theoretic systems theory, the book analyzes various systems in the signal processing engineer’s toolbox: polynomials, quantizers, rectifiers, linear filters with and without quantization effects, principal components analysis, multirate systems, etc. The user benefit of signal processing is further highlighted with the |
|
|
|
|
|
|
|
|
|
|
concept of relevant information loss. Signal or data processing operates on the physical representation of information so that users can easily access and extract that information. However, a fundamental theorem in information theory—data processing inequality—states that deterministic processing always involves information loss. These measures form the basis of a new information-theoretic systems theory, which complements the currently prevailing approaches based on second-order statistics, such as the mean-squared error or error energy. This theory not only provides a deeper understanding but also extends the design space for the applied engineer with a wide range of methods rooted in information theory, adding to existing methods based on energy or quadratic representations. |
|
|
|
|
|
| |