| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNICAMPANIAVAN0114441 |
|
|
Titolo |
Applied matrix and tensor variate data analysis / Toshio Sakata editor |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
[Tokyo], : Springer, 2016 |
|
|
|
|
|
|
|
Titolo uniforme |
Applied matrix and tensor variate data analysis |
|
|
|
|
|
Descrizione fisica |
|
XI, 136 p. : ill. ; 24 cm |
|
|
|
|
|
|
Soggetti |
|
62-XX - Statistics [MSC 2020] |
00B15 - Collections of articles of miscellaneous specific interest [MSC 2020] |
62R07 - Statistical aspects of big data and data science [MSC 2020] |
68T09 - Computational aspects of data analysis and big data [MSC 2020] |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910133221303321 |
|
|
Titolo |
Compositional data analysis : theory and applications / / edited by Vera Pawlowsky-Glahn, Antonella Buccianti |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, N.J., : Wiley, 2011 |
|
|
|
|
|
|
|
ISBN |
|
9786613204516 |
9781283204514 |
1283204517 |
9781119976462 |
1119976464 |
9781119976479 |
1119976472 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (402 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
Pawlowsky-GlahnVera |
BucciantiAntonella |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Multivariate analysis |
Correlation (Statistics) |
Anàlisi multivariable |
Correlació (Estadística) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
pt. 1. Introduction -- pt. 2. Theory-- statistical modelling -- pt. 3. Theory-- algebra and calculus -- pt. 4. Applications -- pt. 5. Software. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, bi |
|
|
|
|
|
|
|
| |