1.

Record Nr.

UNICAMPANIAVAN0083934

Titolo

L'archivio della congregazione dell'Oratorio di Roma e l'archivio della Abbazia di S. Giovanni in Venere : inventario / a cura di Anna Maria Corbo

Pubbl/distr/stampa

Roma, : [s.n.], 1964

Descrizione fisica

234 p. ; 24 cm.

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9911046015303321

Autore

Evensen Geir

Titolo

Ensemble History Matching : Conditioning Reservoir Models on Dynamic Data / / by Geir Evensen, Dean S. Oliver, Remus G. Hanea

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2026

ISBN

3-031-99155-9

Edizione

[1st ed. 2026.]

Descrizione fisica

1 online resource (XVII, 199 p. 74 illus., 71 illus. in color.)

Disciplina

550

910.02

Soggetti

Physical geography

Statistics

Sampling (Statistics)

Earth System Sciences

Applied Statistics

Methodology of Data Collection and Processing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Solving the HM problem -- Introduction -- Formulating the History-Matching Problem -- Randomized Maximum-Likelihood Sampling --



Averaged Model Sensitivity -- Ensemble Formulation -- Subspace EnRML -- Correlation-Based Localization -- Non-Gaussian and Categorical Variables -- Nonlinearity Effects -- Robust optimization and closed-loop reservior management -- Ensemble Optimization Method -- Mean Model Bias Correction Method -- Closed loop reservoir management -- History-matching examples and anlaysis -- History matching the REEK model -- History Matching the Troll Reservoir -- Summary and Future Perspectives.

Sommario/riassunto

This open-access book aims to formulate the history-matching problem consistently and present state-of-the-art ensemble solution methods. The content aims to help practitioners in the field understand the properties of ensemble methods better when used to history-match reservoir models. The book provides educational information for graduate students and researchers in petroleum, geothermal, and hydrological engineering and sciences. It introduces and explains various algorithms used in data assimilation and parameter estimation, focusing on ensemble methods, particularly the most popular ones in the petroleum community. It discusses challenges associated with these techniques, such as dealing with high-dimensional models, finite number of realizations, parameterization, and handling uncertainties in the observations and model parameters. .