| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910481656203321 |
|
|
Autore |
Franciosini Lorenzo |
|
|
Titolo |
Grammatica spagnuola, ed italiana, in questa seconda impressione arricchita di molti auuertimenti, che nella prima si desideráuano [[electronic resource]] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Rome, : Stamparia Camerale, 1638 |
|
|
|
|
|
|
|
Descrizione fisica |
|
Online resource ([12], 158, [2] pages., 4º) |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Reproduction of original in Biblioteca Nazionale Centrale di Firenze. |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910141259703321 |
|
|
Autore |
Lee Sik-Yum |
|
|
Titolo |
Basic and advanced Bayesian structural equation modeling [[electronic resource] ] : with applications in the medical and behavioral sciences / / Sik-Yum Lee and Xin-Yuan Song |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
ISBN |
|
1-118-35887-2 |
1-280-87995-5 |
9786613721266 |
1-118-35880-5 |
1-118-35888-0 |
1-118-35943-7 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (397 p.) |
|
|
|
|
|
|
Collana |
|
Wiley series in probability and statistics |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Structural equation modeling |
Bayesian statistical decision theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Basic and Advanced Bayesian Structural Equation Modeling; Contents; About the authors; Preface; 1 Introduction; 1.1 Observed and latent variables; 1.2 Structural equation model; 1.3 Objectives of the book; 1.4 The Bayesian approach; 1.5 Real data sets and notation; Appendix 1.1: Information on real data sets; References; 2 Basic concepts and applications of structural equation models; 2.1 Introduction; 2.2 Linear SEMs; 2.2.1 Measurement equation; 2.2.2 Structural equation and one extension; 2.2.3 Assumptions of linear SEMs; 2.2.4 Model identification; 2.2.5 Path diagram |
2.3 SEMs with fixed covariates 2.3.1 The model; 2.3.2 An artificial example; 2.4 Nonlinear SEMs; 2.4.1 Basic nonlinear SEMs; 2.4.2 Nonlinear SEMs with fixed covariates; 2.4.3 Remarks; 2.5 Discussion and conclusions; References; 3 Bayesian methods for estimating structural equation models; 3.1 Introduction; 3.2 Basic concepts of the Bayesian estimation and prior distributions; 3.2.1 Prior distributions; 3.2.2 Conjugate prior distributions in Bayesian analyses of SEMs; 3.3 Posterior analysis using Markov chain Monte Carlo methods; 3.4 Application of Markov chain Monte Carlo methods |
3.5 Bayesian estimation via WinBUGS Appendix 3.1: The gamma, inverted gamma, Wishart, and inverted Wishart distributions and their characteristics; Appendix 3.2: The Metropolis-Hastings algorithm; Appendix 3.3: Conditional distributions [Ω|Y,θ] and [θ|Y,Ω]; Appendix 3.4: Conditional distributions [Ω|Y,θ] and [θ|Y,Ω] in nonlinear SEMs with covariates; Appendix 3.5: WinBUGS code; Appendix 3.6: R2WinBUGS code; References; 4 Bayesian model comparison and model checking; 4.1 Introduction; 4.2 Bayes factor; 4.2.1 Path sampling; 4.2.2 A simulation study; 4.3 Other model comparison statistics |
4.3.1 Bayesian information criterion and Akaike information criterion 4.3.2 Deviance information criterion; 4.3.3 Lν-measure; 4.4 Illustration; 4.5 Goodness of fit and model checking methods; 4.5.1 Posterior predictive p-value; 4.5.2 Residual analysis; Appendix 4.1: WinBUGS code; Appendix 4.2: R code in Bayes factor example; Appendix 4.3: Posterior predictive p-value for model assessment; References; 5 Practical structural equation models; 5.1 Introduction; 5.2 SEMs with continuous and ordered categorical variables; 5.2.1 Introduction; 5.2.2 The basic model; 5.2.3 Bayesian analysis |
5.2.4 Application: Bayesian analysis of quality of life data 5.2.5 SEMs with dichotomous variables; 5.3 SEMs with variables from exponential family distributions; 5.3.1 Introduction; 5.3.2 The SEM framework with exponential family distributions; 5.3.3 Bayesian inference; 5.3.4 Simulation study; 5.4 SEMs with missing data; 5.4.1 Introduction; 5.4.2 SEMs with missing data that are MAR; 5.4.3 An illustrative example; 5.4.4 Nonlinear SEMs with nonignorable missing data; 5.4.5 An illustrative real example |
Appendix 5.1: Conditional distributions and implementation of the MH algorithm for SEMs with continuous and ordered categorical variables |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
"This book introduces the Bayesian approach to SEMs, including the selection of prior distributions and data augmentation, and offers an overview of the subject's recent advances"-- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNICAMPANIAVAN00274819 |
|
|
Autore |
Titus, Marvin |
|
|
Titolo |
Higher Education Policy Analysis Using Quantitative Techniques : Data, Methods and Presentation / Marvin Titus |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
xi, 243 p. : ill. ; 24 cm |
|
|
|
|
|
|
Soggetti |
|
62-XX - Statistics [MSC 2020] |
97-XX - Mathematics education [MSC 2020] |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
| |