| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNIORUON00273990 |
|
|
Autore |
KYBALOVA, Ludmila |
|
|
Titolo |
Coptic textiles / Ludmila Kybalova |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London, : Paul Hamlyn, 1967 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNICAMPANIAVAN00262637 |
|
|
Titolo |
Cabal Seminar 79-81 : Proceedings, Caltech-UCLA Logic Seminar 1979-81 / edited by Alexander S. Kechris, Donald A. Martin, Yiannis N. Moschovakis |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Soggetti |
|
00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020] |
03-XX - Mathematical logic and foundations [MSC 2020] |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910346663403321 |
|
|
Autore |
Chiantini Luca |
|
|
Titolo |
Decomposability of Tensors / Luca Chiantini |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
|
Basel, Switzerland : , : MDPI, , 2019 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 electronic resource (160 p.) |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
Tensor decomposition is a relevant topic, both for theoretical and applied mathematics, due to its interdisciplinary nature, which ranges from multilinear algebra and algebraic geometry to numerical analysis, algebraic statistics, quantum physics, signal processing, artificial intelligence, etc. The starting point behind the study of a decomposition relies on the idea that knowledge of elementary components of a tensor is fundamental to implement procedures that are able to understand and efficiently handle the information that a tensor encodes. Recent advances were obtained with a systematic application of geometric methods: secant varieties, symmetries of special decompositions, and an analysis of the geometry of finite sets. Thanks to new applications of theoretic results, criteria for understanding when a given decomposition is minimal or unique have been introduced or significantly improved. New types of decompositions, whose elementary blocks can be chosen in a range of different possible models (e.g., Chow decompositions or mixed decompositions), are now systematically studied and produce deeper insights into this topic. The aim of this Special Issue is to collect papers that illustrate some directions in which recent researches move, as well as to provide a wide overview of several new approaches to the problem of tensor decomposition. |
|
|
|
|
|
|
|
| |