1.

Record Nr.

UNISALENTO991003970529707536

Autore

Mundi, Benito

Titolo

Mappa del colore del centro storico : deliberazione Consiglio Comunale n. 427 del 27-3-1985 / a cura di Benito Mundi

Pubbl/distr/stampa

San Severo : Amministrazione Comunale, stampa 1986

Descrizione fisica

74 p. : ill. ; 24 cm.

Disciplina

711

Soggetti

San Severo - Urbanistica

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In testa al front.: Comune di San Severo.

Esempl. contraddistinto col n. 631.

2.

Record Nr.

UNICAMPANIAVAN00253568

Autore

Siu, Yum-Tong

Titolo

Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics : Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986 / Yum-Tong Siu

Pubbl/distr/stampa

Basel, : Birkhäuser, 1987

Titolo uniforme

Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics

Descrizione fisica

172 p. ; 24 cm

Soggetti

32-XX - Several complex variables and analytic spaces [MSC 2020]

32Qxx - Complex manifolds [MSC 2020]

53-XX - Differential geometry [MSC 2020]

53C55 - Global differential geometry of Hermitian and Kahlerian manifolds [MSC 2020]

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



3.

Record Nr.

UNINA9910742484603321

Autore

Guzmán Francisco S.

Titolo

Numerical Methods for Initial Value Problems in Physics / / by Francisco S. Guzmán

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023

ISBN

3-031-33556-2

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (365 pages)

Disciplina

530.151535

Soggetti

Mathematical physics

Mathematics - Data processing

Differential equations

System theory

Mathematical Methods in Physics

Computational Mathematics and Numerical Analysis

Mathematical Physics

Differential Equations

Complex Systems

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Chapter1. Introduction -- Chapter2. Ordinary Differential Equations -- Chapter3. Simple Methods for Initial Value Problems Involving PDEs -- Chapter4. Method of Lines for Initial Value Problems Involving PDEs -- Chapter5. Finite Volume Methods -- Chapter6. Initial Value Problems in 3+1 and 2+1 dimensions -- Chapter7. Appendix A: Stability of Evolution Schemes -- Chapter8. Appendix B: Codes.

Sommario/riassunto

This textbook is a comprehensive overview of the construction, implementation, and application of important numerical methods for the solution of Initial Value Problems (IVPs). Beginning with IVPs involving Ordinary Differential Equations (ODEs) and progressing to problems with Partial Differential Equations (PDEs) in 1+1 and 3+1 dimensions, it provides readers with a clear and systematic progression from simple to complex concepts. The numerical methods selected in this textbook can solve a considerable variety of problems and the



applications presented cover a wide range of topics, including population dynamics, chaos, celestial mechanics, geophysics, astrophysics, and more. Each chapter contains a variety of solved problems and exercises, with code included. These examples are designed to motivate and inspire readers to delve deeper into the state-of-the-art problems in their own fields. The code is written in Fortran 90, in a library-free style, making them easy to program and efficient to run. The appendix also includes the same code in C++, making the book accessible to a variety of programming backgrounds. At the end of each chapter, there are brief descriptions of how the methods could be improved, along with one or two projects that can be developed with the methods and codes described. These projects are highly engaging, from synchronization of chaos and message encryption to gravitational waves emitted by a binary system and non-linear absorption of a scalar field. With its clear explanations, hands-on approach, and practical examples, this textbook is an essential resource for advanced undergraduate and graduate students who want to the learn how to use numerical methods to tackle challenging problems.