1.

Record Nr.

UNICAMPANIAVAN00253532

Titolo

Sustainable Agriculture : Technical Progressions and Transitions / editor Suhaib A. Bandh

Pubbl/distr/stampa

Cham, : Springer, 2022

Edizione

[IX]

Descrizione fisica

IX, 260 p. : ill. ; 24 cm

Disciplina

338.927

630

910

641

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910316450403321

Autore

Zheng Quan

Titolo

Social Networks with Rich Edge Semantics / / Quan Zheng, David Skillicorn

Pubbl/distr/stampa

Taylor & Francis, 2017

Boca Raton, FL : , : CRC Press, , [2017]

©2017

ISBN

9781315390604

1315390604

9781315390628

1315390620

9781315390611

1315390612

Edizione

[First edition.]

Descrizione fisica

1 online resource (210 pages) : illustrations, tables

Collana

Chapman & Hall/CRC Data Mining and Knowledge Discovery Series

Disciplina

302.3

Soggetti

Social networks - Mathematical models

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa



Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

chapter 1 introduction -- chapter 2 the core model -- chapter 3 background -- chapter 4 modelling relationships of different types -- chapter 5 modelling asymmetric relationships -- chapter 6 modelling asymmetric relationships with multiple types -- chapter 7 modelling relationships that change over time -- chapter 8 modelling positive and negative relationships -- chapter 9 signed graph-based semi-supervised learning -- chapter 10 combining directed and signed embeddings -- chapter 11 summary.

Sommario/riassunto

"Social Networks with Rich Edge Semantics introduces a new mechanism for representing social networks in which pairwise relationships can be drawn from a range of realistic possibilities, including different types of relationships, different strengths in the directions of a pair, positive and negative relationships, and relationships whose intensities change with time. For each possibility, the book shows how to model the social network using spectral embedding. It also shows how to compose the techniques so that multiple edge semantics can be modeled together, and the modeling techniques are then applied to a range of datasets.FeaturesIntroduces the reader to difficulties with current social network analysis, and the need for richer representations of relationships among nodes, including accounting for intensity, direction, type, positive/negative, and changing intensities over timePresents a novel mechanism to allow social networks with qualitatively different kinds of relationships to be described and analyzedIncludes extensions to the important technique of spectral embedding, shows that they are mathematically well motivated and proves that their results are appropriateShows how to exploit embeddings to understand structures within social networks, including subgroups, positional significance, link or edge prediction, consistency of role in different contexts, and net flow of properties through a nodeIllustrates the use of the approach for real-world problems for online social networks, criminal and drug smuggling networks, and networks where the nodes are themselves groupsSuitable for researchers and students in social network research, data science, statistical learning, and related areas, this book will help to provide a deeper understanding of real-world social networks."--Provided by publisher.