1.

Record Nr.

UNICAMPANIAVAN00245850

Titolo

Advances in VLSI, Communication, and Signal Processing : Select Proceedings of VCAS 2019 / David Harvey ... [et al.] editors

Pubbl/distr/stampa

Singapore, : Springer, 2021

Descrizione fisica

XXII, 741 p. : ill. ; 24 cm

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910827493303321

Autore

Biemer Paul P

Titolo

Latent class analysis of survey error / / Paul P. Biemer

Pubbl/distr/stampa

Hoboken, N.J., : Wiley, 2011

ISBN

9786612884436

9781118099575

1118099575

9781282884434

1282884433

9780470891155

0470891157

9780470891148

0470891149

Descrizione fisica

1 online resource (412 p.)

Collana

Wiley series in survey methodology

Disciplina

511/.43

Soggetti

Error analysis (Mathematics)

Sampling (Statistics)

Estimation theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.



Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Latent Class Analysis of Survey Error; Contents; Preface; Abbreviations; CHAPTER 1: Survey Error Evaluation; CHAPTER 2: A General Model for Measurement Error; CHAPTER 3: Response Probability Models for Two Measurements; CHAPTER 4: Latent Class Models for Evaluating Classification Errors; CHAPTER 5: Further Aspects of Latent Class Modeling; CHAPTER 6: Latent Class Models for Special Applications; CHAPTER 7: Latent Class Models for Panel Data; CHAPTER 8: Survey Error Evaluation: Past, Present, and Future; APPENDIX A: Two-Stage Sampling Formulas; APPENDIX B: Loglinear Modeling Essentials

ReferencesIndex

Sommario/riassunto

"This book concerns the error in data collected using sample surveys, the nature and magnitudes of the errors, their effects on survey estimates, how to model and estimate the errors using a variety of modeling methods, and, finally, how to interpret the estimates and make use of the results in reducing the error for future surveys. The book focuses on models that are appropriate for categorical data, although there are references to the differences and special problems that arise in the analysis and modeling of error for continuous data. Though the primary modeling method that is described is latent class analysis (LCA), a wide range of related models and applications are also discussed"--

"This book concerns the error in data collected using sample surveys, the nature and magnitudes of the errors, their effects on survey estimates, how to model and estimate the errors using a variety of modeling methods, and, finally, how to interpret the estimates and make use of the results in reducing the error for future surveys"--