1.

Record Nr.

UNICAMPANIAVAN00113268

Autore

Quatember, Andreas

Titolo

Pseudo-populations : a basic concept in statistical surveys / Andreas Quatember

Pubbl/distr/stampa

[Cham], : Springer, 2015

Titolo uniforme

Pseudo-populations : a basic concept in statistical surveys

Descrizione fisica

X, 138 p. ; 24 cm

Soggetti

62-XX - Statistics [MSC 2020]

62Dxx - Statistical sampling theory and related topics [MSC 2020]

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNIORUON00387438

Autore

Lemaréchal, Alain

Titolo

Comparative grammar and typology : essays on the historical grammar of the Austronesian languages / Alain Lemarechal

Pubbl/distr/stampa

Leuven..[etc.], : Peeters, 2010

ISBN

978-90-429-2254-9

Descrizione fisica

368 p. ; 24 cm

Disciplina

499.5

Soggetti

GRAMMATICA COMPARATIVA

Lingue austronesiane

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



3.

Record Nr.

UNINA9910254075903321

Titolo

K3 Surfaces and Their Moduli / / edited by Carel Faber, Gavril Farkas, Gerard van der Geer

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2016

ISBN

3-319-29959-X

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource (403 p.)

Collana

Progress in Mathematics, , 2296-505X ; ; 315

Disciplina

516.35

Soggetti

Algebraic geometry

Algebraic Geometry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters.

Nota di contenuto

Introduction -- Samuel Boissière, Andrea Cattaneo, Marc Nieper-Wisskirchen, and Alessandra Sarti: The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface -- Igor Dolgachev: Orbital counting of curves on algebraic surfaces and sphere packings -- V. Gritsenko and K. Hulek: Moduli of polarized Enriques surfaces -- Brendan Hassett and Yuri Tschinkel: Extremal rays and automorphisms of holomorphic symplectic varieties -- Gert Heckman and Sander Rieken: An odd presentation for W(E_6) -- S. Katz, A. Klemm, and R. Pandharipande, with an appendix by R. P. Thomas: On the motivic stable pairs invariants of K3 surfaces -- Shigeyuki Kondö: The Igusa quartic and Borcherds products -- Christian Liedtke: Lectures on supersingular K3 surfaces and the crystalline Torelli theorem -- Daisuke Matsushita: On deformations of Lagrangian fibrations -- G. Oberdieck and R. Pandharipande: Curve counting on K3 x E,the Igusa cusp form X_10, and descendent integration -- Keiji Oguiso: Simple abelian varieties and primitive automorphisms of null entropy of surfaces -- Ichiro Shimada: The automorphism groups of certain singular K3 surfaces and an Enriques surface -- Alessandro Verra: Geometry of genus 8 Nikulin surfaces and rationality of their moduli -- Claire Voisin: Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties.

Sommario/riassunto

This book provides an overview of the latest developments concerning



the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry. Contributors: S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.