| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990001603170403321 |
|
|
Autore |
Vinassa De Regny, Paolo <1871-1957> |
|
|
Titolo |
Libya italica : terreni ed acque, vita e colture della nuova colonia / P. Vinassa de Regny ; con appendice di ricerche ed osservazioni originali ed analisi di terreni fatte dall'autore durante la sua permanenza in Tripolitania |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
XI, 214 p., 34 c. di tav. : ill. ; 24 cm |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNICAMPANIASUN0124671 |
|
|
Autore |
Berger, Paul D. |
|
|
Titolo |
Experimental Design : With Application in Management, Engineering, and the Sciences / Paul D. Berger, Robert E. Maurer, Giovana B. Celli |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Edizione |
[2. ed] |
|
|
|
|
|
Descrizione fisica |
|
xviii, 639 p. : ill. ; 24 cm |
|
|
|
|
|
|
Altri autori (Persone) |
|
Maurer, Robert E. |
Celli, Giovana B. |
|
|
|
|
|
|
|
|
Soggetti |
|
62-XX - Statistics [MSC 2020] |
62Kxx - Design of statistical experiments [MSC 2020] |
62F03 - Parametric hypothesis testing [MSC 2020] |
62Jxx - Linear inference, regression [MSC 2020] |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNISALENTO991000393629707536 |
|
|
Titolo |
Net learning : imparare insieme attraverso la rete / a cura di Davide Biolghini e Marisa Cengarle |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
XVIII, 269 p. : ill. ; 24 cm |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Altri autori (Persone) |
|
Biolghini, Davide |
Cengarle, Marisa |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Internet - Impiego didattico |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
4. |
Record Nr. |
UNINA9910438143803321 |
|
|
Autore |
Futer David |
|
|
Titolo |
Guts of surfaces and the colored Jones polynomial / / David Futer, Efstratia Kalfagianni, Jessica Purcell |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Heidelberg ; ; New York, : Springer, c2013 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2013.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (X, 170 p. 62 illus., 45 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Lecture notes in mathematics, , 1617-9692 ; ; 2069 |
|
|
|
|
|
|
Altri autori (Persone) |
|
KalfagianniEfstratia |
PurcellJessica |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Knot theory |
Three-manifolds (Topology) |
Complex manifolds |
Geometry, Hyperbolic |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 163-166) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
1 Introduction -- 2 Decomposition into 3–balls -- 3 Ideal Polyhedra -- 4 I–bundles and essential product disks -- 5 Guts and fibers -- 6 Recognizing essential product disks -- 7 Diagrams without non-prime arcs -- 8 Montesinos links -- 9 Applications -- 10 Discussion and questions. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of |
|
|
|
|
|
|
|
|
|
|
the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants. |
|
|
|
|
|
| |