1.

Record Nr.

UNICAMPANIASUN0090237

Autore

Martinis, Bruno

Titolo

Geologia ambientale / Bruno Martinis

Pubbl/distr/stampa

Torino : UTET,  c1988 stampa 2000

ISBN

88-02-04177-6

Descrizione fisica

XII, 197 p. : ill. ; 25   cm.

Disciplina

333.72

Soggetti

Ambiente naturale - Protezione

Geologia

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910960525703321

Autore

Mazo Robert M

Titolo

Brownian motion : fluctuations, dynamics, and applications / / Robert M. Mazo

Pubbl/distr/stampa

Oxford, : Clarendon Press, 2002

ISBN

9786611998790

9781281998798

1281998796

9780191565083

0191565083

9780199556441

019955644X

Edizione

[1st ed.]

Descrizione fisica

1 online resource (302 p.)

Collana

Oxford science publications

International series of monographs on physics ; ; 112

Disciplina

530.42

530.475

Soggetti

Brownian motion processes

Markov processes

Processos de moviment brownià

Processos estocàstics

Processos de Markov

Mecànica estadística



Difusió

Polímers

Fluctuacions (Física)

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 271-284) and index.

Nota di contenuto

Contents; 1 Historical Background; 1.1 Robert Brown; 1.2 Between Brown and Einstein; 1.3 Albert Einstein; 1.4 Marian von Smoluchowski; 1.5 Molecular Reality; 1.6 The Scope of this Book; 2 Probability Theory; 2.1 Probability; 2.2 Conditional Probability and Independence; 2.3 Random Variables and Probability Distributions; 2.4 Expectations and Particular Distributions; 2.5 Characteristic Function;  Sums of Random Variables; 2.6 Conclusion; 3 Stochastic Processes; 3.1 Stochastic Processes; 3.2 Distribution Functions; 3.3 Classification of Stochastic Processes; 3.4 The Fokker-Planck Equation

3.5 Some Special Processes3.6 Calculus of Stochastic Processes; 3.7 Fourier Analysis of Random Processes; 3.8 White Noise; 3.9 Conclusion; 4 Einstein-Smoluchowski Theory; 4.1 What is Brownian Motion?; 4.2 Smoluchowski's Theory; 4.3 Smoluchowski Theory Continued; 4.4 Einstein's Theory; 4.5 Diffusion Coefficient and Friction Constant; 4.6 The Langevin Theory; 5 Stochastic Differential Equations and Integrals; 5.1 The Langevin Equation Revisited; 5.2 Stochastic Differential Equations; 5.3 Which Rule Should Be Used?; 5.4 Some Examples; 6 Functional Integrals; 6.1 Functional Integrals

6.2 The Wiener Integral6.3 Wiener Measure; 6.4 The Feynman-Kac Formula; 6.5 Feynman Path Integrals; 6.6 Evaluation of Wiener Integrals; 6.7 Applications of Functional Integrals; 7 Some Important Special Cases; 7.1 Several Cases of Interest; 7.2 The Free Particle; 7.3 The Distribution of Displacements; 7.4 The Harmonically Bound Particle; 7.5 A Particle in a Constant Force Field; 7.6 The Uniaxial Rotor; 7.7 An Equation for the Distribution of Displacements; 7.8 Discussion; 8 The Smoluchowski Equation; 8.1 The Kramers-Klein Equation; 8.2 The Smoluchowski Equation

8.3 Elimination of Fast Variables8.4 The Smoluchowski Equation Continued; 8.5 Passage over Potential Barriers; 8.6 Concluding Remarks; 9 Random Walk; 9.1 The Random Walk; 9.2 The One-Dimensional Pearson Walk; 9.3 The Biased Random Walk; 9.4 The Persistent Walk; 9.5 Boundaries and First Passage Times; 9.6 Random Remarks on Random Walks; 10 Statistical Mechanics; 10.1 Molecular Distribution Functions; 10.2 The Liouville Equation; 10.3 Projection Operators-The Zwanzig Equation; 10.4 Projection Operators-The Mori Equation; 10.5 Concluding Remarks

11 Stochastic Equations from a Statistical Mechanical Viewpoint11.1 The Langevin Equation A Heuristic View; 11.2 The Fokker-Planck Equation-A Heuristic View; 11.3 What is Wrong with these Derivations?; 11.4 Eliminating Fast Processes; 11.5 The Distribution Function; 11.6 Discussion; 12 Two Exactly Treatable Models; 12.1 Two Illustrative Examples; 12.2 Brownian Motion in a Dilute Gas; 12.3 Discussion; 12.4 The Particle Bound to a Lattice; 12.5 The One-Dimensional Case; 12.6 Discussion; 13 Brownian Motion and Noise; 13.1 Limits on



Measurement; 13.2 Oscillations of a Fiber

13.3 A Pneumatic Example

Sommario/riassunto

Brownian motion- the incessant motion of small particles suspended in a fluid- is an important topic in statistical physics and physical chemistry. This book studies its origin in molecular scale fluctuations, its description in terms of random process theory and also in terms of statistical mechanics. - ;Brownian motion - the incessant motion of small particles suspended in a fluid - is an important topic in statistical physics and physical chemistry. This book studies its origin in molecular scale fluctuations, its description in terms of random process theory and also in terms of statistica