1.

Record Nr.

UNICAMPANIASUN0035558

Autore

Nickel, Karl L. E.

Titolo

Tailless aircraft in theory and practice / Karl Nickel, Michael Wohlfahrt ; translated by Eric M. Brown

Pubbl/distr/stampa

Washington, D.C. : American Institute of Aeronautics and Astronautics

London : Edward Arnold, 1994

Titolo uniforme

Schwanzlose Flugzeuge. English

ISBN

15-634-7094-2

Descrizione fisica

XIII, 498 p. ; 26 cm.

Disciplina

629.132

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNISALENTO991002951599707536

Autore

Knebusch, Manfred

Titolo

Manis valuations and Prüfer extensions II [e-book] / Manfred Knebusch, Tobias Kaiser

Pubbl/distr/stampa

Cham : Springer, 2014

ISBN

9783319032122

Descrizione fisica

1 online resource (xii, 190 p.)

Collana

Lecture notes in mathematics, 1617-9692 ; 2103

Classificazione

AMS 13A18

AMS 13B02

AMS 13F05

LC QA251.3

Altri autori (Persone)

Kaiser, Tobiasauthor

Disciplina

512.44

Soggetti

Algebra

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Nota di contenuto

Overrings and PM-Spectra ; Approximation Theorems ; Kronecker extensions and star operations ; Basics on Manis valuations and Prufer extensions ; Multiplicative ideal theory ; PM-valuations and valuations of weaker type ; Overrings and PM-Spectra ; Approximation Theorems ; Kronecker extensions and star operations ; Appendix ; References ; Index

Sommario/riassunto

This volume is a sequel to 'Manis Valuation and Prüfer Extensions I,' LNM1791. The Prüfer extensions of a commutative ring A are roughly those commutative ring extensions R / A,where commutative algebra is governed by Manis valuations on R with integral values on A. These valuations then turn out to belong to the particularly amenable subclass of PM (=Prüfer-Manis) valuations. While in Volume I Prüfer extensions in general and individual PM valuations were studied, now the focus is on families of PM valuations. One highlight is the presentation of a very general and deep approximation theorem for PM valuations, going back to Joachim Gräter's work in 1980, a far-reaching extension of the classical weak approximation theorem in arithmetic. Another highlight is a theory of so called 'Kronecker extensions,' where PM valuations are put to use in arbitrary commutative ring extensions in a way that ultimately goes back to the work of Leopold Kronecker